1
|
Fardel O, Moreau A, Carteret J, Denizot C, Le Vée M, Parmentier Y. The Competitive Counterflow Assay for Identifying Drugs Transported by Solute Carriers: Principle, Applications, Challenges/Limits, and Perspectives. Eur J Drug Metab Pharmacokinet 2024; 49:527-539. [PMID: 38958896 DOI: 10.1007/s13318-024-00902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
The identification of substrates for solute carriers (SLCs) handling drugs is an important challenge, owing to the major implication of these plasma membrane transporters in pharmacokinetics and drug-drug interactions. In this context, the competitive counterflow (CCF) assay has been proposed as a practical and less expensive approach than the reference functional uptake assays for discriminating SLC substrates and non-substrates. The present article was designed to summarize and discuss key-findings about the CCF assay, including its principle, applications, challenges and limits, and perspectives. The CCF assay is based on the decrease of the steady-state accumulation of a tracer substrate in SLC-positive cells, caused by candidate substrates. Reviewed data highlight the fact that the CCF assay has been used to identify substrates and non-substrates for organic cation transporters (OCTs), organic anion transporters (OATs), and organic anion transporting polypeptides (OATPs). The performance values of the CCF assay, calculated from available CCF study data compared with reference functional uptake assay data, are, however, rather mitigated, indicating that the predictability of the CCF method for assessing SLC-mediated transportability of drugs is currently not optimal. Further studies, notably aimed at standardizing the CCF assay and developing CCF-based high-throughput approaches, are therefore required in order to fully precise the interest and relevance of the CCF assay for identifying substrates and non-substrates of SLCs.
Collapse
Affiliation(s)
- Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35043, Rennes, France.
| | - Amélie Moreau
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35043, Rennes, France
| | - Claire Denizot
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35043, Rennes, France
| | - Yannick Parmentier
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Svane N, Pedersen ABV, Rodenberg A, Ozgür B, Saaby L, Bundgaard C, Kristensen M, Tfelt-Hansen P, Brodin B. The putative proton-coupled organic cation antiporter is involved in uptake of triptans into human brain capillary endothelial cells. Fluids Barriers CNS 2024; 21:39. [PMID: 38711118 DOI: 10.1186/s12987-024-00544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Triptans are anti-migraine drugs with a potential central site of action. However, it is not known to what extent triptans cross the blood-brain barrier (BBB). The aim of this study was therefore to determine if triptans pass the brain capillary endothelium and investigate the possible underlying mechanisms with focus on the involvement of the putative proton-coupled organic cation (H+/OC) antiporter. Additionally, we evaluated whether triptans interacted with the efflux transporter, P-glycoprotein (P-gp). METHODS We investigated the cellular uptake characteristics of the prototypical H+/OC antiporter substrates, pyrilamine and oxycodone, and seven different triptans in the human brain microvascular endothelial cell line, hCMEC/D3. Triptan interactions with P-gp were studied using the IPEC-J2 MDR1 cell line. Lastly, in vivo neuropharmacokinetic assessment of the unbound brain-to-plasma disposition of eletriptan was conducted in wild type and mdr1a/1b knockout mice. RESULTS We demonstrated that most triptans were able to inhibit uptake of the H+/OC antiporter substrate, pyrilamine, with eletriptan emerging as the strongest inhibitor. Eletriptan, almotriptan, and sumatriptan exhibited a pH-dependent uptake into hCMEC/D3 cells. Eletriptan demonstrated saturable uptake kinetics with an apparent Km of 89 ± 38 µM and a Jmax of 2.2 ± 0.7 nmol·min-1·mg protein-1 (n = 3). Bidirectional transport experiments across IPEC-J2 MDR1 monolayers showed that eletriptan is transported by P-gp, thus indicating that eletriptan is both a substrate of the H+/OC antiporter and P-gp. This was further confirmed in vivo, where the unbound brain-to-unbound plasma concentration ratio (Kp,uu) was 0.04 in wild type mice while the ratio rose to 1.32 in mdr1a/1b knockout mice. CONCLUSIONS We have demonstrated that the triptan family of compounds possesses affinity for the H+/OC antiporter proposing that the putative H+/OC antiporter plays a role in the BBB transport of triptans, particularly eletriptan. Our in vivo studies indicate that eletriptan is subjected to simultaneous brain uptake and efflux, possibly facilitated by the putative H+/OC antiporter and P-gp, respectively. Our findings offer novel insights into the potential central site of action involved in migraine treatment with triptans and highlight the significance of potential transporter related drug-drug interactions.
Collapse
Affiliation(s)
- Nana Svane
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | - Anne Rodenberg
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Burak Ozgür
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, Denmark
| | - Lasse Saaby
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
- Bioneer: FARMA, Bioneer A/S, Copenhagen, Denmark
| | | | - Mie Kristensen
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Peer Tfelt-Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Bällgren F, Hammarlund-Udenaes M, Loryan I. Active Uptake of Oxycodone at Both the Blood-Cerebrospinal Fluid Barrier and The Blood-Brain Barrier without Sex Differences: A Rat Microdialysis Study. Pharm Res 2023; 40:2715-2730. [PMID: 37610619 PMCID: PMC10733202 DOI: 10.1007/s11095-023-03583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Oxycodone active uptake across the blood-brain barrier (BBB) is associated with the putative proton-coupled organic cation (H+/OC) antiporter system. Yet, the activity of this system at the blood-cerebrospinal fluid barrier (BCSFB) is not fully understood. Additionally, sex differences in systemic pharmacokinetics and pharmacodynamics of oxycodone has been reported, but whether the previous observations involve sex differences in the function of the H+/OC antiporter system remain unknown. The objective of this study was, therefore, to investigate the extent of oxycodone transport across the BBB and the BCSFB in female and male Sprague-Dawley rats using microdialysis. METHODS Microdialysis probes were implanted in the blood and two of the following brain locations: striatum and lateral ventricle or cisterna magna. Oxycodone was administered as an intravenous infusion, and dialysate, blood and brain were collected. Unbound partition coefficients (Kp,uu) were calculated to understand the extent of oxycodone transport across the blood-brain barriers. Non-compartmental analysis was conducted using Phoenix 64 WinNonlin. GraphPad Prism version 9.0.0 was used to perform t-tests, one-way and two-way analysis of variance followed by Tukey's or Šídák's multiple comparison tests. Differences were considered significant at p < 0.05. RESULTS The extent of transport at the BBB measured in striatum was 4.44 ± 1.02 (Kp,uu,STR), in the lateral ventricle 3.41 ± 0.74 (Kp,uu,LV) and in cisterna magna 2.68 ± 1.01 (Kp,uu,CM). These Kp,uu values indicate that the extent of oxycodone transport is significantly lower at the BCSFB compared with that at the BBB, but still confirm the presence of active uptake at both blood-brain interfaces. No significant sex differences were observed in neither the extent of oxycodone delivery to the brain, nor in the systemic pharmacokinetics of oxycodone. CONCLUSIONS The findings clearly show that active uptake is present at both the BCSFB and the BBB. Despite some underestimation of the extent of oxycodone delivery to the brain, CSF may be an acceptable surrogate of brain ISF for oxycodone, and potentially also other drugs actively transported into the brain via the H+/OC antiporter system.
Collapse
Affiliation(s)
- Frida Bällgren
- Translational Pharmacokinetics/Pharmacodynamics group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden.
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics/Pharmacodynamics group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden.
| |
Collapse
|
4
|
Goracci L, Nurisso A, Roussel E, Pérès B, Chaptal V, Falson P, Marminon C, Jose J, Le Borgne M, Boumendjel A. Inhibitors of ABCG2-mediated multidrug resistance: Lead generation through computer-aided drug design. Eur J Med Chem 2023; 248:115070. [PMID: 36628850 DOI: 10.1016/j.ejmech.2022.115070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Human breast cancer resistance protein (BCRP), known also as ABCG2, plays a major role in multiple drug resistance (MDR) in tumor cells. Through this ABC transporter, cancer cells acquire the ability of resistance to structurally and functionally unrelated anticancer drugs. Nowadays, the design of ABCG2 inhibitors as potential agents to enhance the chemotherapy efficacy is an interesting strategy. In this context, we have used computer-aided drug design (CADD) based on available data of a large series of potent inhibitors from our groups as an approach in guiding the design of effective ABCG2 inhibitors. We report therein the results on the use of the FLAPpharm method to elucidate the pharmacophoric features of one of the ABCG2 binding sites involved in the regulation of the basal ATPase activity of the transporter. The predictivity of the model was evaluated by testing three predicted compounds which were found to induce high inhibitory activity of BCRP, in the nanomolar range for the best of them.
Collapse
Affiliation(s)
- Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Alessandra Nurisso
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211, Geneva 4, Switzerland
| | - Emile Roussel
- Université Grenoble Alpes, INSERM, LRB UMR 1039, 38000, Grenoble, France
| | - Basile Pérès
- Université Grenoble Alpes, CNRS, DPM, UMR 5063, 38000, Grenoble, France
| | - Vincent Chaptal
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367, Lyon, France
| | - Pierre Falson
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367, Lyon, France
| | - Christelle Marminon
- Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Joachim Jose
- Westfälische Wilhelms-Universität Münster, Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Corrensstr. 48, 48149, Münster, Germany
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Ahcène Boumendjel
- Université Grenoble Alpes, INSERM, LRB UMR 1039, 38000, Grenoble, France.
| |
Collapse
|
5
|
Sachkova A, Jensen O, Dücker C, Ansari S, Brockmöller J. The mystery of the human proton-organic cation antiporter: One transport protein or many? Pharmacol Ther 2022; 239:108283. [DOI: 10.1016/j.pharmthera.2022.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
|
6
|
Substrates of the Human Brain Proton-Organic Cation Antiporter and Comparison with Organic Cation Transporter 1 Activities. Int J Mol Sci 2022; 23:ijms23158430. [PMID: 35955563 PMCID: PMC9369162 DOI: 10.3390/ijms23158430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Many organic cations (OCs) may be transported through membranes by a genetically still uncharacterized proton-organic cation (H + OC) antiporter. Here, we characterized an extended substrate spectrum of this antiporter. We studied the uptake of 72 drugs in hCMEC/D3 cells as a model of the human blood–brain barrier. All 72 drugs were tested with exchange transport assays and the transport of 26 of the drugs was studied in more detail concerning concentration-dependent uptake and susceptibility to specific inhibitors. According to exchange transport assays, 37 (51%) drugs were good substrates of the H + OC antiporter. From 26 drugs characterized in more detail, 23 were consistently identified as substrates of the H + OC antiporter in six different assays and transport kinetic constants could be identified with intrinsic clearances between 0.2 (ephedrine) and 201 (imipramine) mL × minute−1 × g protein−1. Excellent substrates of the H + OC antiporter were no substrates of organic cation transporter OCT1 and vice versa. Good substrates of the H + OC antiporter were more hydrophobic and had a lower topological polar surface area than non-substrates or OCT1 substrates. These data and further research on the H + OC antiporter may result in a better understanding of pharmacokinetics, drug–drug interactions and variations in pharmacokinetics.
Collapse
|