1
|
Hoveidaei AH, Mosalamiaghili S, Sabaghian A, Hajiaghajani S, Farsani AS, Sahebi M, Poursalehian M, Nwankwo BO, Conway JD. Local antibiotic delivery: Recent basic and translational science insights in orthopedics. Bone 2025; 193:117416. [PMID: 39914596 DOI: 10.1016/j.bone.2025.117416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Infections remain a significant challenge in orthopedic settings despite advancements in preventive measures. Antibiotics are the primary defense against infections, but optimal delivery methods to the infection site are still being investigated. This review aims to examine existing approaches for local drug delivery from a basic science perspective. RECENT FINDINGS Achieving adequate antibiotic concentration at the infection site is challenging due to compromised vasculature in ischemic conditions. Local administration methods, including antibiotic-loaded carriers such as impregnated bone grafts and various bone substitutes, are being explored as alternatives to systemic antibiotic use. SUMMARY Various materials, including polymethyl methacrylate (PMMA), hydroxyapatite, calcium phosphate/sulfate, bone glass, and hydrogel, are being investigated for local antibiotic delivery. Some of these materials possess inherent antibacterial properties due to their chemical interactions. The selection of appropriate antibiotics, their dosage, release kinetics from the carrier material, physical behavior of the material/graft, and biocompatibility are key areas for further investigation in basic science research.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | | | | | - Sina Hajiaghajani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Sahebi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Poursalehian
- Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Basilia Onyinyechukwu Nwankwo
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA; Howard University Hospital, Department of Orthopaedic Surgery and Rehabilitation, Washington, DC, USA
| | - Janet D Conway
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| |
Collapse
|
2
|
Preetam S, Duhita Mondal D, Mukerjee N, Naser SS, Tabish TA, Thorat N. Revolutionizing Cancer Treatment: The Promising Horizon of Zein Nanosystems. ACS Biomater Sci Eng 2024; 10:1946-1965. [PMID: 38427627 PMCID: PMC11005017 DOI: 10.1021/acsbiomaterials.3c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
Various nanomaterials have recently become fascinating tools in cancer diagnostic applications because of their multifunctional and inherent molecular characteristics that support efficient diagnosis and image-guided therapy. Zein nanoparticles are a protein derived from maize. It belongs to the class of prolamins possessing a spherical structure with conformational properties similar to those of conventional globular proteins like ribonuclease and insulin. Zein nanoparticles have gained massive interest over the past couple of years owing to their natural hydrophilicity, ease of functionalization, biodegradability, and biocompatibility, thereby improving oral bioavailability, nanoparticle targeting, and prolonged drug administration. Thus, zein nanoparticles are becoming a promising candidate for precision cancer drug delivery. This review highlights the clinical significance of applying zein nanosystems for cancer theragnostic─moreover, the role of zein nanosystems for cancer drug delivery, anticancer agents, and gene therapy. Finally, the difficulties and potential uses of these NPs in cancer treatment and detection are discussed. This review will pave the way for researchers to develop theranostic strategies for precision medicine utilizing zein nanosystems.
Collapse
Affiliation(s)
- Subham Preetam
- Department
of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Deb Duhita Mondal
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata, West Bengal 700107, India
| | - Nobendu Mukerjee
- Centre
for Global Health Research, Saveetha Medical
College and Hospital, Chennai 602105, India
- Department
of Science and Engineering, Novel Global
Community and Educational Foundation, Hebasham 2770, NSW, Australia
| | | | - Tanveer A. Tabish
- Division
of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford, OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick
Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
3
|
Khaing EM, Jitrangsri K, Chomto P, Phaechamud T. Nitrocellulose for Prolonged Permeation of Levofloxacin HCl-Salicylic Acid In Situ Gel. Polymers (Basel) 2024; 16:989. [PMID: 38611247 PMCID: PMC11014302 DOI: 10.3390/polym16070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Currently, the application of solvent exchange-induced in situ gel is underway for drug delivery to the body target site. Nitrocellulose was attempted in this research as the matrix-forming agent in solvent exchange-induced in situ gel for acne and periodontitis treatments. The gel incorporated a combination of 1% w/w levofloxacin HCl and 2% w/w salicylic acid as the active compounds. In order to facilitate formulation development, the study explored the matrix-forming behavior of different concentrations of nitrocellulose in N-methyl pyrrolidone (NMP). Consequently, their physicochemical properties and matrix-forming behavior, as well as antimicrobial and anti-inflammatory activities, were evaluated using the agar cup diffusion method and thermal inhibition of protein denaturation in the egg albumin technique, respectively. All prepared formulations presented as clear solutions with Newtonian flow. Their contact angles on agarose gel were higher than on a glass slide due to matrix formation upon exposure to the aqueous phase of agarose, with an angle of less than 60° indicating good spreadability. Nitrocellulose concentrations exceeding 20% initiated stable opaque matrix formation upon contact with phosphate buffer pH 6.8. The high hardness and remaining force of the transformed gel indicated their robustness after solvent exchange. Fluorescence tracking using sodium fluorescein and Nile red confirmed the retardation of NMP and water diffusion by the nitrocellulose matrix. From the Franz cell permeation study, these drugs could permeate through neonate porcine skin and tissue of porcine buccal from the nitrocellulose in situ forming gel. Their accumulation in these tissues might enable the inhibition of the invading bacterial pathogens. The developed in situ gels effectively inhibited Staphylococcus aureus, Staphylococcus epidermidis, Propionibacterium acnes, and Porphyromonas gingivalis. Furthermore, the formulations demonstrated an anti-inflammatory effect. The low viscosity of LvSa25Nc makes it appropriate for injectable treatments targeting periodontitis, while the higher viscosity of LvSa40Nc renders it appropriate for topical applications in acne treatment. Therefore, the nitrocellulose in situ gel loaded with combined levofloxacin HCl and salicylic acid emerges as a promising dosage form for treating acne and periodontitis.
Collapse
Affiliation(s)
- Ei Mon Khaing
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (E.M.K.); (P.C.)
| | - Kritamorn Jitrangsri
- Department of Chemical Engineering and Pharmaceutical Chemistry, School of Engineering and Technology, Walailak University, Nakhon Srithammarat 80160, Thailand;
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Parichart Chomto
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (E.M.K.); (P.C.)
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thawatchai Phaechamud
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (E.M.K.); (P.C.)
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
4
|
Adel IM, ElMeligy MF, Amer MS, Elkasabgy NA. Polymeric nanocomposite hydrogel scaffold for jawbone regeneration: The role of rosuvastatin calcium-loaded silica nanoparticles. Int J Pharm X 2023; 6:100213. [PMID: 37927584 PMCID: PMC10622845 DOI: 10.1016/j.ijpx.2023.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Bones are subject to different types of damages ranging from simple fatigue to profound defects. In serious cases, the endogenous healing mechanism is not capable of healing the damage or restoring the normal structure and function of the bony tissue. The aim of this research was to achieve a sustained delivery of rosuvastatin and assess its efficacy in healing bone tissue damage. Rosuvastatin was entrapped into silica nanoparticles and the system was loaded into an alginate hydrogel to be implanted in the damaged tissue. Silica nanoparticles were formulated based on a modified Stöber technique and alginate hydrogel was prepared via sprinkling alginate onto silica nanoparticle dispersion followed by addition of CaCl2 to promote crosslinking and hydrogel rigidification. The selected nanoparticle formulation possessed high % drug content (100.22± 0.67%), the smallest particle size (221.00± 7.30 nm) and a sustained drug release up to 4 weeks (98.72± 0.52%). The fabricated hydrogel exhibited a further delay in drug release (81.52± 4.81% after 4 weeks). FT-IR indicated the silica nanoparticle formation and hydrogel crosslinking. SEM visualized the porous and dense surface of hydrogel. In-vivo testing on induced bone defects in New Zealand rabbits revealed the enhanced rate of new bone tissue formation, its homogeneity in color as well as similarity in structure to the original tissue.
Collapse
Affiliation(s)
- Islam M. Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mohamed F. ElMeligy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mohammed S. Amer
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
5
|
Nocca G, Arcovito A, Elkasabgy NA, Basha M, Giacon N, Mazzinelli E, Abdel-Maksoud MS, Kamel R. Cellulosic Textiles-An Appealing Trend for Different Pharmaceutical Applications. Pharmaceutics 2023; 15:2738. [PMID: 38140079 PMCID: PMC10747844 DOI: 10.3390/pharmaceutics15122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cellulose, the most abundant biopolymer in nature, is derived from various sources. The production of pharmaceutical textiles based on cellulose represents a growing sector. In medicated textiles, textile and pharmaceutical sciences are integrated to develop new healthcare approaches aiming to improve patient compliance. Through the possibility of cellulose functionalization, pharmaceutical textiles can broaden the applications of cellulose in the biomedical field. This narrative review aims to illustrate both the methods of extraction and preparation of cellulose fibers, with a particular focus on nanocellulose, and diverse pharmaceutical applications like tissue restoration and antimicrobial, antiviral, and wound healing applications. Additionally, the merging between fabricated cellulosic textiles with drugs, metal nanoparticles, and plant-derived and synthetic materials are also illustrated. Moreover, new emerging technologies and the use of smart medicated textiles (3D and 4D cellulosic textiles) are not far from those within the review scope. In each section, the review outlines some of the limitations in the use of cellulose textiles, indicating scientific research that provides significant contributions to overcome them. This review also points out the faced challenges and possible solutions in a trial to present an overview on all issues related to the use of cellulose for the production of pharmaceutical textiles.
Collapse
Affiliation(s)
- Giuseppina Nocca
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mona Basha
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt (R.K.)
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
| | - Elena Mazzinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
| | | | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt (R.K.)
| |
Collapse
|
6
|
Senarat S, Rojviriya C, Puyathorn N, Lertsuphotvanit N, Phaechamud T. Levofloxacin HCl-Incorporated Zein-Based Solvent Removal Phase Inversion In Situ Forming Gel for Periodontitis Treatment. Pharmaceutics 2023; 15:pharmaceutics15041199. [PMID: 37111684 PMCID: PMC10143341 DOI: 10.3390/pharmaceutics15041199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Zein is composed of nonpolar amino acids and is a water-insoluble protein used as the matrix-forming agent of localized in situ forming gel (ISG). Therefore, this study prepared solvent removal phase inversion zein-based ISG formulations to load levofloxacin HCl (Lv) for periodontitis treatment using dimethyl sulfoxide (DMSO) and glycerol formal (GF) as the solvents. Their physicochemical properties were determined, including viscosity, injectability, gel formation, and drug release. The topography of dried remnants after drug release was revealed using a scanning electron microscope and X-ray computed microtomography (μCT) to investigate their 3D structure and % porosity. The antimicrobial activities were tested against Staphylococcus aureus (ATCC 6538), Escherichia coli ATCC 8739, Candida albicans ATCC 10231, and Porphyromonas gingivalis ATCC 33277 with agar cup diffusion. Increasing zein concentration or using GF as the solvent notably enhanced the apparent viscosity and injection force of the zein ISG. However, its gel formation slowed due to the dense zein matrix barrier's solvent exchange: the higher loaded zein or utilization of GF as an ISG solvent prolonged Lv release. The SEM and μCT images revealed the scaffold of dried ISG in that their % porosity corresponded with their phase transformation and drug release behavior. In addition, the sustainability of drug diffusion promoted a smaller antimicrobial inhibition clear zone. Drug release from all formulations was attained with minimum inhibitory concentrations against pathogen microbes and exhibited a controlled release over 7 days. Lv-loaded 20% zein ISG using GF as a solvent exhibited appropriate viscosity, Newtonian flow, acceptable gel formation and injectability, and prolonged Lv release over 7 days with efficient antimicrobial activities against various test microbes; thus, it is the potential ISG formulation for periodontitis treatment. Consequently, the Lv-loaded solvent removal zein-based ISGs proposed in this investigation offer promising potential as an efficacious drug delivery system for periodontitis treatment by local injection.
Collapse
Affiliation(s)
- Setthapong Senarat
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Catleya Rojviriya
- Synchrotron Light Research Institute, Mueang District, Nakhon Ratchasima 30000, Thailand
| | - Napaphol Puyathorn
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nutdanai Lertsuphotvanit
- Program of Pharmaceutical Technology, Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thawatchai Phaechamud
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Program of Pharmaceutical Technology, Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
7
|
Gomaa E, Eissa NG, Ibrahim TM, El-Bassossy HM, El-Nahas HM, Ayoub MM. Development of depot PLGA-based in-situ implant of Linagliptin: Sustained release and glycemic control. Saudi Pharm J 2023; 31:499-509. [PMID: 37063437 PMCID: PMC10102447 DOI: 10.1016/j.jsps.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
High percentage of diabetic people are diagnosed as type 2 who require daily dosing of an antidiabetic drug such as Linagliptin (Lina) to manage their blood glucose levels. This study aimed to develop injectable Lina-loaded biodegradable poly (lactic-co-glycolic acid) (PLGA) in-situ implants (ISIs) to deliver a desired burst effect of Lina followed by a sustained release over several days for controlling the blood glucose levels over prolonged time periods. The morphological, pharmacokinetic, and pharmacodynamic assessments of the Lina-loaded ISIs were performed. Scanning electron microscopy (SEM) study revealed the rapid exchange between the water miscible solvent (N-methyl-2-pyrrolidone; NMP) and water during the ISI preparation, hence enhancing the initial burst Lina release. While, triacetin of lower water affinity could lead to formation of more compact and dense ISI structure with slower drug release. By comparing various ISI formulations containing different solvents and different PLGA concentrations, the ISI containing 40 % PLGA and triacetin was selected for its sustained release of Lina (93.06 ± 1.50 %) after 21 days. The pharmacokinetic results showed prolonged half life (t1/2) and higher area under the curve (AUC) values of the selected Lina-loaded ISI when compared to those of oral Lina preparation. The single Lina-ISI injection produced a hypoglycemic control in the diabetic rats very similar to the daily oral administration of Lina after 7 and 14 days. In conclusion, PLGA-based ISIs confirmed their suitability for prolonging Lina release in patients receiving long-term antidiabetic therapy, thereby achieving more enhanced patient compliance and reduced dosing frequency.
Collapse
Affiliation(s)
- Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Noura G. Eissa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hany M. El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hanan M. El-Nahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Margrit M. Ayoub
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
8
|
Puyathorn N, Senarat S, Lertsuphotvanit N, Phaechamud T. Physicochemical and Bioactivity Characteristics of Doxycycline Hyclate-Loaded Solvent Removal-Induced Ibuprofen-Based In Situ Forming Gel. Gels 2023; 9:gels9020128. [PMID: 36826298 PMCID: PMC9956372 DOI: 10.3390/gels9020128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Modulation with the suppression of infection and inflammation is essential to the successful treatment of periodontitis. An aqueous insoluble hydrophobic anti-inflammatory compound, i.e., ibuprofen (IBU), was investigated in this study as the matrix-forming agent of a doxycycline hyclate (DH)-loaded solvent removal-induced in situ forming gel (ISG) using dimethyl sulfoxide (DMSO) and N-methyl pyrrolidone (NMP) as the solvents. Their physicochemical properties, including pH, density, viscosity, surface tension, contact angle, water tolerance, injectability, mechanical properties, gel formation, and drug release, were determined. Their antimicrobial activities were tested using agar cup diffusion, and their anti-inflammatory activity was assessed using thermal inhibition of protein denaturation of egg albumin. Increasing the IBU content decreased the density, pH, surface tension, and contact angle but increased the viscosity, force and work of injection, and gel formation of IBU-based ISG solution. Although their water tolerance values decreased with the increase in IBU content, the addition of DH and the use of NMP led to high water tolerance. The characterization of the dried gel remnants of ISGs presented no change in IBU crystallinity and thermal properties and confirmed no chemical interaction among the components of ISGs. The obtained transformed IBU matrix prolonged the release of DH and IBU from ISGs over 7 days from its tortuously packed IBU matrix with small pores, and conformed well with Fickian diffusion mechanism. The developed DH-loaded solvent removal-induced IBU-based ISGs exhibited efficient antimicrobial activities against Staphylococcus aureus, methicillin-resistant S. aureus, Escherichia coli, Candida albicans, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans. IBU in formulation promoted the antimicrobial activity of ISGs, whereas DH and NMP promoted the anti-inflammatory activity of ISGs. Consequently, the DH-loaded solvent removal-induced IBU-based ISGs proposed in this study show great potential as an effective bioactive drug delivery system for periodontitis treatment by localized periodontal pocket injection.
Collapse
Affiliation(s)
- Napaphol Puyathorn
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Setthapong Senarat
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nutdanai Lertsuphotvanit
- Program of Pharmaceutical Technology, Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thawatchai Phaechamud
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Correspondence: ; Tel.: +66-034-255800
| |
Collapse
|
9
|
Different Curcumin-Loaded Delivery Systems for Wound Healing Applications: A Comprehensive Review. Pharmaceutics 2022; 15:pharmaceutics15010038. [PMID: 36678665 PMCID: PMC9862251 DOI: 10.3390/pharmaceutics15010038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Curcumin or turmeric is the active constituent of Curcuma longa L. It has marvelous medicinal applications in many diseases. When the skin integrity is compromised due to either acute or chronic wounds, the body initiates several steps leading to tissue healing and skin barrier function restoration. Curcumin has very strong antibacterial and antifungal activities with powerful wound healing ability owing to its antioxidant activity. Nevertheless, its poor oral bioavailability, low water solubility and rapid metabolism limit its medical use. Tailoring suitable drug delivery systems for carrying curcumin improves its pharmaceutical and pharmacological effects. This review summarizes the most recent reported curcumin-loaded delivery systems for wound healing purposes, chiefly hydrogels, films, wafers, and sponges. In addition, curcumin nanoformulations such as nanohydrogels, nanoparticles and nanofibers are also presented, which offer better solubility, bioavailability, and sustained release to augment curcumin wound healing effects through stimulating the different healing phases by the aid of the small carrier.
Collapse
|
10
|
Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022; 23:267. [PMID: 36163568 PMCID: PMC9512992 DOI: 10.1208/s12249-022-02419-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023] Open
Abstract
Tissue engineering has emerged as an interesting field nowadays; it focuses on accelerating the auto-healing mechanism of tissues rather than organ transplantation. It involves implanting an In Vitro cultured initiative tissue or a scaffold loaded with tissue regenerating ingredients at the damaged area. Both techniques are based on the use of biodegradable, biocompatible polymers as scaffolding materials which are either derived from natural (e.g. alginates, celluloses, and zein) or synthetic sources (e.g. PLGA, PCL, and PLA). This review discusses in detail the recent applications of different biomaterials in tissue engineering highlighting the targeted tissues besides the in vitro and in vivo key findings. As well, smart biomaterials (e.g. chitosan) are fascinating candidates in the field as they are capable of elucidating a chemical or physical transformation as response to external stimuli (e.g. temperature, pH, magnetic or electric fields). Recent trends in tissue engineering are summarized in this review highlighting the use of stem cells, 3D printing techniques, and the most recent 4D printing approach which relies on the use of smart biomaterials to produce a dynamic scaffold resembling the natural tissue. Furthermore, the application of advanced tissue engineering techniques provides hope for the researchers to recognize COVID-19/host interaction, also, it presents a promising solution to rejuvenate the destroyed lung tissues.
Collapse
Affiliation(s)
- Alaa Emad Eldeeb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
11
|
Investigation of Alogliptin-Loaded In Situ Gel Implants by 23 Factorial Design with Glycemic Assessment in Rats. Pharmaceutics 2022; 14:pharmaceutics14091867. [PMID: 36145615 PMCID: PMC9501034 DOI: 10.3390/pharmaceutics14091867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of the study was to design injectable long-acting poly (lactide-co-glycolide) (PLGA)-based in situ gel implants (ISGI) loaded with the anti-diabetic alogliptin. Providing sustained therapeutic exposures and improving the pharmacological responses of alogliptin were targeted for achieving reduced dosing frequency and enhanced treatment outputs. In the preliminary study, physicochemical characteristics of different solvents utilized in ISGI preparation were studied to select a proper solvent possessing satisfactory solubilization capacity, viscosity, water miscibility, and affinity to PLGA. Further, an optimization technique using a 23 factorial design was followed. The blood glucose levels of diabetic rats after a single injection with the optimized formulation were compared with those who received daily oral alogliptin. N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO), as highly water-miscible and low viscous solvents, demonstrated their effectiveness in successful ISGI preparation and controlling the burst alogliptin release. The impact of increasing lactide concentration and PLGA amount on reducing the burst and cumulative alogliptin release was represented. The optimized formulation comprising 312.5 mg of PLGA (65:35) and DMSO manifested a remarkable decrease in the rats’ blood glucose levels throughout the study period in comparison to that of oral alogliptin solution. Meanwhile, long-acting alogliptin-loaded ISGI systems demonstrated their feasibility for treating type 2 diabetes with frequent dosage reduction and patient compliance enhancement.
Collapse
|
12
|
Liu Q, Qin Y, Jiang B, Chen J, Zhang T. Development of self-assembled zein-fucoidan complex nanoparticles as a delivery system for resveratrol. Colloids Surf B Biointerfaces 2022; 216:112529. [PMID: 35561636 DOI: 10.1016/j.colsurfb.2022.112529] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
Abstract
Resveratrol is a well-studied dietary polyphenol with diverse health-promoting bioactivities. However, the aqueous insolubility and chemical instability of resveratrol hamper its practical application. This study set out to address these limitations by constructing zein-fucoidan composite nanoparticles as a delivery system of resveratrol. The optimized resveratrol-loaded zein-fucoidan particles (RE-ZFP) were obtained at zein-to-fucoidan ratio of 2:1 (w/w) and zein-to-resveratrol ratio of 10:1 (w/w), and RE-ZFP showed evenly distributed and smoothly spherical microstructures, mean particle size of 121 nm, ζ-potential of - 41 mV, encapsulation efficiency for resveratrol of 95.4%. Electrostatic, steric, hydrophobic, and hydrogen-bonding interactions were major forces required to form RE-ZFP. In addition, RE-ZFP exhibited greater photostability and colloidal stability (including pH, ionic, and storage stabilities) than resveratrol-loaded zein particles (RE-ZP). Particularly, RE-ZFP showed fairly good pH stability. Moreover, zein-fucoidan-based delivery system exhibited a controlled release of resveratrol under in vitro digestion. Finally, zein-fucoidan nanocarriers presented extremely low cytotoxicity to HIEC-6 cells. All the findings demonstrate that the zein-fucoidan nanoparticles developed in the current work will be a prospective strategy for loading resveratrol and other hydrophobic bioactive ingredients and thus extending their application in nutraceuticals or pharmaceuticals.
Collapse
Affiliation(s)
- Qianyuan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
Maged A, Abdelbaset R, Mahmoud AA, Elkasabgy NA. Merits and advances of microfluidics in the pharmaceutical field: design technologies and future prospects. Drug Deliv 2022; 29:1549-1570. [PMID: 35612293 PMCID: PMC9154770 DOI: 10.1080/10717544.2022.2069878] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microfluidics is used to manipulate fluid flow in micro-channels to fabricate drug delivery vesicles in a uniform tunable size. Thanks to their designs, microfluidic technology provides an alternative and versatile platform over traditional formulation methods of nanoparticles. Understanding the factors that affect the formulation of nanoparticles can guide the proper selection of microfluidic design and the operating parameters aiming at producing nanoparticles with reproducible properties. This review introduces the microfluidic systems' continuous flow (single-phase) and segmented flow (multiphase) and their different mixing parameters and mechanisms. Furthermore, microfluidic approaches for efficient production of nanoparticles as surface modification, anti-fouling, and post-microfluidic treatment are summarized. The review sheds light on the used microfluidic systems and operation parameters applied to prepare and fine-tune nanoparticles like lipid, poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles as well as cross-linked nanoparticles. The approaches for scale-up production using microfluidics for clinical or industrial use are also highlighted. Furthermore, the use of microfluidics in preparing novel micro/nanofluidic drug delivery systems is presented. In conclusion, the characteristic vital features of microfluidics offer the ability to develop precise and efficient drug delivery nanoparticles.
Collapse
Affiliation(s)
- Amr Maged
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.,Pharmaceutical Factory, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Reda Abdelbaset
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo, Egypt
| | - Azza A Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Eldeeb AE, Salah S, Amer MS, Elkasabgy NA. 3D nanocomposite alginate hydrogel loaded with pitavastatin nanovesicles as a functional wound dressing with controlled drug release; preparation, in-vitro and in-vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Development and Evaluation of Chitosan Nanoparticles for Ocular Delivery of Tedizolid Phosphate. Molecules 2022; 27:molecules27072326. [PMID: 35408724 PMCID: PMC9000411 DOI: 10.3390/molecules27072326] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigates the development of topically applied non-invasive chitosan-nanoparticles (CSNPs) for ocular delivery of tedizolid phosphate (TZP) for the treatment of MRSA-related ocular and orbital infections. An ionic-gelation method was used to prepare TZP-encapsulated CSNPs using tripolyphosphate-sodium (TPP) as cross-linker. Particle characterization was performed by the DLS technique (Zeta-Sizer), structural morphology was observed by SEM. The drug encapsulation and loading were determined by the indirect method. In-vitro release was conducted through dialysis bags in simulated tear fluid (pH 7) with 0.25% Tween-80. Physicochemical characterizations were performed for ocular suitability of CSNPS. An antimicrobial assay was conducted on different strains of Gram-positive bacteria. Eye-irritation from CSNPs was checked in rabbits. Transcorneal flux and apparent permeability of TZP from CSNPs was estimated through excised rabbit cornea. Ionic interaction between the anionic and cationic functional groups of TPP and CS, respectively, resulted in the formation of CSNPs at varying weight ratios of CS/TPP with magnetic stirring (700 rpm) for 4 h. The CS/TPP weight ratio of 3.11:1 with 10 mg of TZP resulted in optimal-sized CSNPs (129.13 nm) with high encapsulation (82%) and better drug loading (7%). Release profiles indicated 82% of the drug was released from the TZP aqueous suspension (TZP-AqS) within 1 h, while it took 12 h from F2 to release 78% of the drug. Sustained release of TZP from F2 was confirmed by applying different release kinetics models. Linearity in the profile (suggested by Higuchi’s model) indicated the sustained release property CSNPs. F2 has shown significantly increased (p < 0.05) antibacterial activity against some Gram-positive strains including one MRSA strain (SA-6538). F2 exhibited a 2.4-fold increased transcorneal flux and apparent permeation of TZP as compared to TZP-AqS, indicating the better corneal retention. No sign or symptoms of discomfort in the rabbits’ eyes were noted during the irritation test with F2 and blank CSNPs, indicating the non-irritant property of the TZP-CSNPs. Thus, the TZP-loaded CSNPs have strong potential for topical use in the treatment of ocular MRSA infections and related inflammatory conditions.
Collapse
|