1
|
Popova E, Tikhomirova V, Akhmetova A, Ilina I, Kalinina N, Taliansky M, Kost O. Calcium Phosphate Nanoparticles as Carriers of Low and High Molecular Weight Compounds. Int J Mol Sci 2024; 25:12887. [PMID: 39684598 DOI: 10.3390/ijms252312887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Nanoparticles could improve the bioavailability of active agents of various natures to human, animal, and plant tissues. In this work, we compared two methods on the synthesis of calcium phosphate nanoparticles (CaPs), differed by the synthesis temperature, pH, and concentration of the stabilizing agent, and explored the possibilities of incorporation of a low-molecular-weight peptide analogue enalaprilat, the enzyme superoxide dismutase 1 (SOD1), as well as DNA and dsRNA into these particles, by coprecipitation and sorption. CaPs obtained with and without cooling demonstrated the highest inclusion efficiency for enalaprilat upon coprecipitation: 250 ± 10 μg/mg of CaPs and 340 ± 30 μg/mg of CaPs, respectively. Enalaprilat sorption on the preliminarily formed CaPs was much less effective. SOD1 was only able to coprecipitate with CaPs upon cooling, with SOD1 loading 6.6 ± 2 μg/mg of CaPs. For the incorporation of DNA, the superiority of the sorption method was demonstrated, allowing loading of up to 88 μg/mg of CaPs. The ability of CaPs to incorporate dsRNa by sorption was also demonstrated by electrophoresis and atomic force microscopy. These results could have important implications for the development of the roots for incorporating substances of different natures into CaPs for agricultural and medical applications.
Collapse
Affiliation(s)
- Ekaterina Popova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Chemistry Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Victoria Tikhomirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Chemistry Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Assel Akhmetova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Physical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina Ilina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalia Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Olga Kost
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Chemistry Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
WADHWA KARAN, CHAUHAN PAYAL, KUMAR SHOBHIT, PAHWA RAKESH, VERMA RAVINDER, GOYAL RAJAT, SINGH GOVIND, SHARMA ARCHANA, RAO NEHA, KAUSHIK DEEPAK. Targeting brain tumors with innovative nanocarriers: bridging the gap through the blood-brain barrier. Oncol Res 2024; 32:877-897. [PMID: 38686045 PMCID: PMC11056000 DOI: 10.32604/or.2024.047278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
Background Glioblastoma multiforme (GBM) is recognized as the most lethal and most highly invasive tumor. The high likelihood of treatment failure arises from the presence of the blood-brain barrier (BBB) and stem cells around GBM, which avert the entry of chemotherapeutic drugs into the tumor mass. Objective Recently, several researchers have designed novel nanocarrier systems like liposomes, dendrimers, metallic nanoparticles, nanodiamonds, and nanorobot approaches, allowing drugs to infiltrate the BBB more efficiently, opening up innovative avenues to prevail over therapy problems and radiation therapy. Methods Relevant literature for this manuscript has been collected from a comprehensive and systematic search of databases, for example, PubMed, Science Direct, Google Scholar, and others, using specific keyword combinations, including "glioblastoma," "brain tumor," "nanocarriers," and several others. Conclusion This review also provides deep insights into recent advancements in nanocarrier-based formulations and technologies for GBM management. Elucidation of various scientific advances in conjunction with encouraging findings concerning the future perspectives and challenges of nanocarriers for effective brain tumor management has also been discussed.
Collapse
Affiliation(s)
- KARAN WADHWA
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - PAYAL CHAUHAN
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - SHOBHIT KUMAR
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET) NH-58, Delhi-Roorkee Highway, Meerut, 250005, India
| | - RAKESH PAHWA
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - RAVINDER VERMA
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - RAJAT GOYAL
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - GOVIND SINGH
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - ARCHANA SHARMA
- Delhi Pharmaceutical Sciences and Research University (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - NEHA RAO
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - DEEPAK KAUSHIK
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
3
|
Mahmoud DB, Wölk C, Schulz-Siegmund M. Fabrication of 3D Printed, Core-and-Shell Implants as Controlled Release Systems for Local siRNA Delivery. Adv Healthc Mater 2023; 12:e2301643. [PMID: 37712605 DOI: 10.1002/adhm.202301643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/21/2023] [Indexed: 09/16/2023]
Abstract
The development and clinical translation of small interfering RNA (siRNA) therapies remains challenging owing to their poor pharmacokinetics. 3D printing technology presents a great opportunity to fabricate personalized implants for local and sustained delivery of siRNA. Hydrogels can mimic the mechanical properties of tissues, avoiding the problems associated with rigid implants. Herein, a thermoresponsive composite hydrogel suitable for extrusion 3D-printing is formulated to fabricate controlled-release implants loaded with siRNA-Lipofectamine RNAiMAX complexes. A hydrogel matrix mainly composed of uncharged agarose to protect siRNA from decomplexation is selected. Additionally, pluronic F127 and gelatin are added to improve the printability, degradation, and cell adhesion to the implants. To avoid exposing siRNA to thermal stress during the printing process, a core-and-shell design is set up for the implants in which a core of siRNA-complexes loaded-pluronic F127 is printed without heat and enclosed with a shell comprising the thermoresponsive composite hydrogel. The release profile of siRNA-complexes is envisioned to be controlled by varying the printing patterns. The results reveal that the implants sustain siRNA release for one month. The intactness of the released siRNA-complexes is proven until the eighth day. Furthermore, by changing the printing patterns, the release profiles can be tailored.
Collapse
Affiliation(s)
- Dina B Mahmoud
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317, Leipzig, Germany
- Department of Pharmaceutics, Egyptian Drug Authority, Giza, 11553, Egypt
| | - Christian Wölk
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317, Leipzig, Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317, Leipzig, Germany
| |
Collapse
|
4
|
Roerig J, Schulz-Siegmund M. Standardization Approaches for Extracellular Vesicle Loading with Oligonucleotides and Biologics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301763. [PMID: 37287374 DOI: 10.1002/smll.202301763] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/13/2023] [Indexed: 06/09/2023]
Abstract
Extracellular vesicles (EVs) are widely recognized for their potential as drug delivery systems. EVs are membranous nanoparticles shed from cells. Among their natural features are their ability to shield cargo molecules against degradation and enable their functional internalization into target cells. Especially biological or bio-inspired large molecules (LMs), like nucleic acids, proteins, peptides, and others, may profit from encapsulation in EVs for drug delivery purposes. In the last years, a variety of loading protocols are explored for different LMs. The lack of standardization in the EV drug delivery field has impeded their comparability so far. Currently, the first reporting frameworks and workflows for EV drug loading are proposed. The aim of this review is to summarize these evolving standardization approaches and set recently developed methods into context. This will allow for enhanced comparability of future work on EV drug loading with LMs.
Collapse
Affiliation(s)
- Josepha Roerig
- Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Leipzig University, 04317, Leipzig, Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Leipzig University, 04317, Leipzig, Germany
| |
Collapse
|
5
|
Wenzel B, Schmid M, Teodoro R, Moldovan RP, Lai TH, Mitrach F, Kopka K, Fischer B, Schulz-Siegmund M, Brust P, Hacker MC. Radiofluorination of an Anionic, Azide-Functionalized Teroligomer by Copper-Catalyzed Azide-Alkyne Cycloaddition. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2095. [PMID: 37513105 PMCID: PMC10385230 DOI: 10.3390/nano13142095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
This study describes the synthesis, radiofluorination and purification of an anionic amphiphilic teroligomer developed as a stabilizer for siRNA-loaded calcium phosphate nanoparticles (CaP-NPs). As the stabilizing amphiphile accumulates on nanoparticle surfaces, the fluorine-18-labeled polymer should enable to track the distribution of the CaP-NPs in brain tumors by positron emission tomography after application by convection-enhanced delivery. At first, an unmodified teroligomer was synthesized with a number average molecular weight of 4550 ± 20 Da by free radical polymerization of a defined composition of methoxy-PEG-monomethacrylate, tetradecyl acrylate and maleic anhydride. Subsequent derivatization of anhydrides with azido-TEG-amine provided an azido-functionalized polymer precursor (o14PEGMA-N3) for radiofluorination. The 18F-labeling was accomplished through the copper-catalyzed cycloaddition of o14PEGMA-N3 with diethylene glycol-alkyne-substituted heteroaromatic prosthetic group [18F]2, which was synthesized with a radiochemical yield (RCY) of about 38% within 60 min using a radiosynthesis module. The 18F-labeled polymer [18F]fluoro-o14PEGMA was obtained after a short reaction time of 2-3 min by using CuSO4/sodium ascorbate at 90 °C. Purification was performed by solid-phase extraction on an anion-exchange cartridge followed by size-exclusion chromatography to obtain [18F]fluoro-o14PEGMA with a high radiochemical purity and an RCY of about 15%.
Collapse
Affiliation(s)
- Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Maximilian Schmid
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Rareş-Petru Moldovan
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Thu Hang Lai
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Franziska Mitrach
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany
| | - Klaus Kopka
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, 01069 Dresden, Germany
| | - Björn Fischer
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany
| | - Michael C Hacker
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Roerig J, Mitrach F, Schmid M, Hause G, Hacker MC, Wölk C, Schulz-Siegmund M. Synergistic siRNA Loading of Extracellular Vesicles Enables Functional Delivery into Cells. SMALL METHODS 2022; 6:e2201001. [PMID: 36284470 DOI: 10.1002/smtd.202201001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
RNA interference opened new approaches for disease treatment but safe and efficient cell delivery remains a bottleneck. Extracellular vesicles (EVs) are known to naturally shuttle RNA. Due to their potent cell internalization and low-cost scalability, milk-derived EVs in particular are considered promising RNA delivery systems. However, low drug loading currently impedes their use. Here, innovative exogenous loading strategies for small interfering RNA (siRNA) are explored and systematically compared regarding encapsulation efficiency, loading capacity, and loading concentration. Firstly, siRNA is pre-accumulated in liposomes or stabilized calcium phosphate nanoparticles (CaP-NP). The selected systems, which exhibited neutral or negative zeta potentials, are then applied for EV loading. Secondly, EVs are concentrated and applied to protocols known for liposome loading: dehydration-rehydration of vesicles, based on freeze-drying, and mixing by dual asymmetric centrifugation (DAC) after ultracentrifugation. Additionally, DAC after EV ultracentrifugation is combined with CaP-NP leading to a synergistic loading performance. The balance between energy input for siRNA loading and EV integrity is evaluated by monitoring the EV size, marker proteins, and morphology. For the EV-based siRNA formulation via DAC plus CaP-NP, EV properties are sufficiently maintained to protect the siRNA from degradation and deliver cell-death siRNA dose-dependently in Caco-2 cells.
Collapse
Affiliation(s)
- Josepha Roerig
- Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Leipzig University, 04275, Leipzig, Germany
| | - Franziska Mitrach
- Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Leipzig University, 04275, Leipzig, Germany
| | - Maximilian Schmid
- Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Leipzig University, 04275, Leipzig, Germany
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine University, 40225, Duesseldorf, Germany
| | - Gerd Hause
- Biocenter, Martin-Luther University Halle-Wittenberg, 06099, Halle (Saale), Germany
| | - Michael C Hacker
- Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Leipzig University, 04275, Leipzig, Germany
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine University, 40225, Duesseldorf, Germany
| | - Christian Wölk
- Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Leipzig University, 04275, Leipzig, Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Leipzig University, 04275, Leipzig, Germany
| |
Collapse
|
7
|
Liu CH, Shih PY, Lin CH, Chen YJ, Wu WC, Wang CC. Tetraethylenepentamine-Coated β Cyclodextrin Nanoparticles for Dual DNA and siRNA Delivery. Pharmaceutics 2022; 14:pharmaceutics14050921. [PMID: 35631507 PMCID: PMC9145619 DOI: 10.3390/pharmaceutics14050921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Nucleic acid reagents, including plasmid-encoded genes and small interfering RNA (siRNA), are promising tools for validating gene function and for the development of therapeutic agents. Native β-cyclodextrins (BCDs) have limited efficiency in gene delivery due to their instable complexes with nucleic acid. We hypothesized that cationic BCD nanoparticles could be an efficient carrier for both DNA and siRNA. Tetraethylenepentamine-coated β-cyclodextrin (TEPA-BCD) nanoparticles were synthesized, characterized, and evaluated for targeted cell delivery of plasmid DNA and siRNA. The cationic TEPA coating provided ideal zeta potential and effective nucleic acid binding ability. When transfecting plasmid encoding green fluorescent protein (GFP) by TEPA-BCD, excellent GFP expression could be achieved in multiple cell lines. In addition, siRNA transfected by TEPA-BCD suppressed target GFP gene expression. We showed that TEPA-BCD internalization was mediated by energy-dependent endocytosis via both clathrin-dependent and caveolin-dependent endocytic pathways. TEPA-BCD nanoparticles provide an effective means of nucleic acid delivery and can act as potential carriers in future pharmaceutical application.
Collapse
Affiliation(s)
- Chi-Hsien Liu
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-H.L.); (Y.-J.C.)
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, 261, Wen-Hwa First Road, Taoyuan 33302, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, 84, Gung-Juan Road, New Taipei City 24301, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, 5, Fu-Hsing Street, Taoyuan 33305, Taiwan;
- Correspondence: (C.-H.L.); (C.-C.W.)
| | - Pei-Yin Shih
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Cheng-Han Lin
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-H.L.); (Y.-J.C.)
| | - Yi-Jun Chen
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-H.L.); (Y.-J.C.)
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, 5, Fu-Hsing Street, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Chao Wang
- Institute of Molecular Medicine & Department of Medical Science, National Tsing Hua University, 101, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Correspondence: (C.-H.L.); (C.-C.W.)
| |
Collapse
|
8
|
Mineralizing Gelatin Microparticles as Cell Carrier and Drug Delivery System for siRNA for Bone Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14030548. [PMID: 35335924 PMCID: PMC8949427 DOI: 10.3390/pharmaceutics14030548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
The local release of complexed siRNA from biomaterials opens precisely targeted therapeutic options. In this study, complexed siRNA was loaded to gelatin microparticles cross-linked (cGM) with an anhydride-containing oligomer (oPNMA). We aggregated these siRNA-loaded cGM with human mesenchymal stem cells (hMSC) to microtissues and stimulated them with osteogenic supplements. An efficient knockdown of chordin, a BMP-2 antagonist, caused a remarkably increased alkaline phosphatase (ALP) activity in the microtissues. cGM, as a component of microtissues, mineralized in a differentiation medium within 8–9 days, both in the presence and in the absence of cells. In order to investigate the effects of our pre-differentiated and chordin-silenced microtissues on bone homeostasis, we simulated in vivo conditions in an unstimulated co-culture system of hMSC and human peripheral blood mononuclear cells (hPBMC). We found enhanced ALP activity and osteoprotegerin (OPG) secretion in the model system compared to control microtissues. Our results suggest osteoanabolic effects of pre-differentiated and chordin-silenced microtissues.
Collapse
|