1
|
Saeed MD, Shah KU, Fahad M, Shah SU, Badshah SF, Shah H, Anjum I, Shazly GA, Bourhia M. Self-nanoemulsifying drug delivery system for nebulization: fabrication and evaluation for systemic delivery of atorvastatin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3829-3842. [PMID: 39361170 DOI: 10.1007/s00210-024-03494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/25/2024] [Indexed: 04/10/2025]
Abstract
The study undertakes the development of an atorvastatin-loaded self-nanoemulsifying drug delivery system (SNEDDS) to improve its bioavailability. The SNEDDS were fabricated using oleic acid, Tween 80, and Span 80 by spontaneous emulsification. The SNEDDS were assessed for their particle size distribution, zeta potential, morphology, drug content, surface tension, viscosity, and drug release. The aerodynamic performance of the SNEDDS was evaluated using an Andersen cascade impactor, while the lipid-lowering potential of the SNEDDS was determined in Wistar rats using the analyzer "Microlab 300." The particle size of the SNEDDS ranged from 36 to 311 nm, with a polydispersity index (PDI) of 0.25-0.40. The zeta potential of the SNEDDS fluctuated from - 29.22 to - 38.26 mV, which declined to - 4.55 mV in the case of F5. The chitosan-coated formulation (F5) exhibited a higher viscosity (22.12 mPa s) and lower surface tension (0.056 dyne/cm) than other formulations (F1-F4). The non-coated formulation exhibited a significantly higher burst drug release, followed by a sustained drug release pattern (p ≤ 0.05) as compared to the coated formulation (F5). The nebulized SNEDDS achieved a dispersed fraction of 87 to 97%, where notably higher aerosol dispersion from F4 was attributed to its smaller particle size and circularity. The inhaled fraction of nebulized SNEDDS was 74-87%. The size of the SNEDDS droplets was the primary determinant affecting the aerodynamic performance of the SNEDDS during nebulization. The chitosan-coated SNEDDS achieved a higher antihyperlipidemic effect than marketed tablets, which shows the suitability of F5 for effective systemic delivery of atorvastatin through the lung.
Collapse
Affiliation(s)
- Muhammad Danish Saeed
- Particle Design and Drug Delivery Laboratory, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, 29050, Khyber Pakhtunkhwa, Pakistan.
| | - Kifayat Ullah Shah
- Particle Design and Drug Delivery Laboratory, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, 29050, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Fahad
- Particle Design and Drug Delivery Laboratory, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, 29050, Khyber Pakhtunkhwa, Pakistan
| | - Shefaat Ullah Shah
- Particle Design and Drug Delivery Laboratory, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, 29050, Khyber Pakhtunkhwa, Pakistan
| | - Syed Faisal Badshah
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Hassan Shah
- Center of Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, 02115, USA
| | - Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-E-Millat University, Islamabad, Pakistan
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco.
| |
Collapse
|
2
|
Wu F, Ma Q, Tian G, Chen K, Yang R, Shen J. Formulation and Evaluation of Solid Self-Nanoemulsifying Drug Delivery System of Cannabidiol for Enhanced Solubility and Bioavailability. Pharmaceutics 2025; 17:340. [PMID: 40143004 PMCID: PMC11944824 DOI: 10.3390/pharmaceutics17030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: This study aims to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) to enhance the solubility and oral bioavailability of cannabidiol (CBD). Methods: According to the solubility of CBD and pseudo-ternary phase diagrams of the different ingredients, an oil (medium-chain triglyceride, MCT), mixed surfactants (Labrasol, Tween 80), and a co-surfactant (Transcutol) were selected for the SNEDDS. CBD-loaded SNEDDS formulations were prepared and characterized. The optimal SNEDDS was converted into solid SNEDDS powders via solid carrier adsorption and spray drying techniques. Various evaluations including flowability, drug release, self-emulsifying capacity, X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), morphology, and pharmacokinetic characteristics were conducted. Subsequently, the solid powders with fillers, disintegrants, and lubricants were added to the capsules for accelerated stability testing. Results: The investigations showed that the two S-SNEDDS formulations improved the CBD's solubility and in vitro drug release, with good storage stability. The pharmacokinetic data of Sprague Dawley rats indicated that a single oral dose of L-SNEDDS and spray drying SNEDDS led to a quicker absorption and a higher Cmax of CBD compared to the two oil-based controls (CBD-sesame oil (similar to Epidiolex®) and CBD-MCT), which is favorable for the application of CBD products. Conclusions: SNEDDS is a prospective strategy for enhancing the solubility and oral bioavailability of CBD, and solid SNEDDS offers flexibility for developing more CBD-loaded solid formulations. Moreover, SNEDDS provides new concepts and methods for other poorly water-soluble drugs.
Collapse
Affiliation(s)
- Fengying Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (F.W.); (K.C.)
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Vigonvita Life Sciences Co., Ltd., Suzhou 215125, China; (Q.M.); (G.T.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Ma
- Vigonvita Life Sciences Co., Ltd., Suzhou 215125, China; (Q.M.); (G.T.)
| | - Guanghui Tian
- Vigonvita Life Sciences Co., Ltd., Suzhou 215125, China; (Q.M.); (G.T.)
| | - Kaixian Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (F.W.); (K.C.)
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rulei Yang
- Vigonvita Life Sciences Co., Ltd., Suzhou 215125, China; (Q.M.); (G.T.)
| | - Jingshan Shen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; (F.W.); (K.C.)
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Ahamdi N, Ahranjani PJ, Rashidi L, Rezaei K. Fortification of Sunflower Oil by Nanoemulsions Containing Vitamin-D 3: Formation, Stability, and Release. Food Sci Nutr 2025; 13:e4677. [PMID: 40092524 PMCID: PMC11909008 DOI: 10.1002/fsn3.4677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/05/2024] [Accepted: 12/03/2024] [Indexed: 03/19/2025] Open
Abstract
This study addresses the challenge of stabilizing vitamin D3, an unstable, fat-soluble vitamin, whose efficacy is diminished by environmental factors. The objective was to encapsulate vitamin D3 using pectin (1%-3% w/w) and whey protein concentrate (WPC) (1%-2% w/w) at varying ratios, facilitated by Tween 80 surfactant (0.5% and 2.5% w/w), through high-pressure homogenization to create oil-in-water (O/W) nanoemulsions. Optimization of the preparation conditions for both aqueous and oil phases was conducted using an experimental design. Characterization and stability of the nanoemulsions were assessed using scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR). Release kinetics of vitamin-D3 into sunflower oil were monitored using high-performance liquid chromatography (HPLC) under various conditions. The optimal encapsulation was achieved with a 30:70 oil-to-aqueous phase ratio, comprising 27.5% oil and 2.5% surfactant in the oil phase, and 1% WPC and 2% pectin in the aqueous phase. The nanoemulsion demonstrated stability over 60 days of storage, with a z-average particle size of 98.2 nm. HPLC analysis indicated a 90% recovery of encapsulated vitamin-D3 in sunflower oil. These findings suggest the promising approach of the developed nanoemulsion for enhancing the bioavailability and shelf life of vitamin-D3 in food applications.
Collapse
Affiliation(s)
- Nadia Ahamdi
- Food Technology and Agriculture Products Research Center Standard Research Institute (SRI), Iranian National Standards Organization (INSO) Karaj Iran
| | - Parham Joolaei Ahranjani
- Faculty of Agricultural, Environmental and Food Sciences Free University of Bolzano Bolzano Italy
| | - Ladan Rashidi
- Food Technology and Agriculture Products Research Center Standard Research Institute (SRI), Iranian National Standards Organization (INSO) Karaj Iran
| | - Keramatollah Rezaei
- Department of Food Science and Engineering, Faculty of Agricultural Engineering and Technology University of Tehran Karaj Iran
| |
Collapse
|
4
|
Sabale V, Girhepunje M, Ingole A, Warokar A, Sawarkar K, Sabale P. Acyl chitosan based self-nanoemulsifying drug delivery system of lipophilic drug with enhanced oral bioavailability and mucoadhesion: Formulation development, optimization and in vitro/in vivo characterization. Int J Biol Macromol 2025; 306:141257. [PMID: 39986527 DOI: 10.1016/j.ijbiomac.2025.141257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
This study developed a mucoadhesive self-nano emulsifying drug delivery system (SNEDDS) with synthesized acyl chitosan coating for enhancing oral bioavailability and drug retention of Amphotericin B (AB) which is conventionally administered parenterally owing to its poor bioavailability. Acyl chitosan was synthesized and characterized. The AB and acyl chitosan Amphotericin B (ACAB) SNEDDS were prepared using capryol 90, kolliphor RH 40 and propylene glycol and optimized using Box- Behnken Design (BBD). After preliminary evaluation of both the SNEDDS, the optimized formulation underwent compatibility, thermodynamic stability, robustness to dilution, dissolution, permeation, mucoadhesion, SEM, and in vivo pharmacokinetic studies. Both AB and ACAB SNEDDS were transparent with sizes of 70.68 nm and 83 nm, respectively and had spherical morphology. ACAB SNEDDS exhibited controlled release of the drug (85.6 %) over AB SNEDDS (90.5 %) and increased drug permeation (97 % Vs 75 %) over 24 h. For ACAB SNEDDS higher drug plasma concentration (0.254 ± 0.03 μg/mL) over AB SNEDDS (0.194 μg/mL) and AB suspension (0.152 ± 0.03 μg/mL) was observed from in vivo pharmacokinetic studies on rats. The developed ACAB SNEDDS improved the solubility, permeability, oral bioavailability and drug retention through mucoadhesion.
Collapse
Affiliation(s)
- Vidya Sabale
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India.
| | - Mrunali Girhepunje
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Ashwini Ingole
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Amol Warokar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Krutika Sawarkar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, Maharashtra, India
| | - Prafulla Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Nagpur 440 033, Maharashtra, India
| |
Collapse
|
5
|
Jacob S, Kather FS, Boddu SHS, Shah J, Nair AB. Innovations in Nanoemulsion Technology: Enhancing Drug Delivery for Oral, Parenteral, and Ophthalmic Applications. Pharmaceutics 2024; 16:1333. [PMID: 39458662 PMCID: PMC11510719 DOI: 10.3390/pharmaceutics16101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Nanoemulsions (NEs) are submicron-sized heterogeneous biphasic liquid systems stabilized by surfactants. They are physically transparent or translucent, optically isotropic, and kinetically stable, with droplet sizes ranging from 20 to 500 nm. Their unique properties, such as high surface area, small droplet size, enhanced bioavailability, excellent physical stability, and rapid digestibility, make them ideal for encapsulating various active substances. This review focuses on recent advancements, future prospects, and challenges in the field of NEs, particularly in oral, parenteral, and ophthalmic delivery. It also discusses recent clinical trials and patents. Different types of in vitro and in vivo NE characterization techniques are summarized. High-energy and low-energy preparation methods are briefly described with diagrams. Formulation considerations and commonly used excipients for oral, ocular, and ophthalmic drug delivery are presented. The review emphasizes the need for new functional excipients to improve the permeation of large molecular weight unstable proteins, oligonucleotides, and hydrophilic drugs to advance drug delivery rapidly.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
6
|
Kumar S, Taumar D, Gaikwad S, More A, Nema V, Mukherjee A. Antiretroviral action of Rosemary oil-based atazanavir formulation and the role of self-nanoemulsifying drug delivery system in the management of HIV-1 infection. Drug Deliv Transl Res 2024; 14:1888-1908. [PMID: 38161197 DOI: 10.1007/s13346-023-01492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Atazanavir or ATV is an FDA-approved, HIV-1 protease inhibitor that belongs to the azapeptide group. Over time, it has been observed that ATV can cause multiple adverse side effects in the form of liver diseases including elevations in serum aminotransferase, indirect hyper-bilirubinemia, and idiosyncratic acute liver injury aggravating the underlying chronic viral hepatitis. Hence, there is an incessant need to explore the safe and efficacious method of delivering ATV in a controlled manner that may reduce the proportion of its idiosyncratic reactions in patients who are on antiretroviral therapy for years. In this study, we assessed ATV formulation along with Rosemary oil to enhance the anti-HIV-1 activity and its controlled delivery through self-nanoemulsifying drug delivery system or SNEDDS to enhance its oral bioavailability. While the designing, development, and characterization of ATV-SNEDDS were addressed through various evaluation parameters and pharmacokinetic-based studies, in vitro cell-based experiments assured the safety and efficacy of the designed ATV formulation. The study discovered the potential of ATV-SNEDDS to inhibit HIV-1 infection at a lower concentration as compared to its pure counterpart. Simultaneously, we could also demonstrate the ATV and Rosemary oil providing leads for designing and developing such formulations for the management of HIV-1 infections with the alleviation in the risk of adverse reactions.
Collapse
Affiliation(s)
- Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, 250005, Uttar Pradesh, India
| | - Dhananjay Taumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, 250005, Uttar Pradesh, India
| | - Shraddha Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Ashwini More
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Vijay Nema
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Ministry of Health & Family Welfare, Plot No. 73, 'G' Block, MIDC, Bhosari, Pune, 411026, Maharashtra, India.
| |
Collapse
|
7
|
Vidovix TB, Januário EFD, Bergamasco R, Vieira AMS. Efficient removal of sertraline hydrochloride from wastewater using banana peels functionalized: performance adsorption, mechanisms and applicability. ENVIRONMENTAL TECHNOLOGY 2024; 45:2119-2131. [PMID: 36597779 DOI: 10.1080/09593330.2022.2164745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The presence of sertraline hydrochloride (SER) has been detected in water bodies and wastewater, which encourages the search for alternative treatments for its control and removal. Agro-industrial residues are considered efficient adsorbents and functionalization with magnetic nanoparticles improve the adsorptive properties of these materials, in addition to facilitating their separation from a fluid by an external magnetic field. Thus, this study developed and characterized a new material via the functionalization of the banana peel with iron oxide nanoparticles (BANFunc) for the adsorption of SER in batch experiments. Physicochemical and spectroscopic techniques indicated that the BANFunc functionalization method was effective and improved the adsorption capacity (0.68 and 39.96 mg g-1 for BANPure and BANFunc, respectively). The adsorption studies revealed a maximum adsorptive capacity of 142.85 mg g-1 at 240 min and 318 K. Furthermore, the process presented spontaneous and endothermic behaviour, with a better fit to the pseudo-first-order and Langmuir models for the kinetic and isothermal, respectively. The reuse of the biosorbent was effective for five cycles, and even in the 3rd cycle, the adsorbent showed more than 80% SER removal. The adsorption process can be explained by hydrogen bonds and π-interactions. In the synthetic mixture treatment, the biosorbent demonstrated a satisfactory removal rate, of 86.91%, and individual removals of 83.23%, 89.36% and 88.15% for SER, safranine orange and chloroquine, respectively. Therefore, BANFunc is a promising material for large-scale applications, considering its sustainable character and high treatment efficiency.
Collapse
Affiliation(s)
| | | | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringá, Maringá, Brazil
| | | |
Collapse
|
8
|
Phan NT, Tran YTH, Nguyen LT, Hoang YK, Bui CK, Nguyen HD, Vu GTT. Self Nanoelmusifying Drug Delivery System of Rosuvastatin: Bioavailability Evaluation and In vitro - In vivo Correlation. Curr Drug Deliv 2024; 21:734-743. [PMID: 36545742 DOI: 10.2174/1567201820666221220104244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Rosuvastatin, most commonly used in the form of calcium salt, belongs to the statin groups of synthetic antihyperlipidemic agents. Rosuvastatin possesses high permeability, however, its aqueous solubility is poor, causing a slow dissolution rate in water. Consequently, this dissolution rate has a decisive role in the release and absorption of rosuvastatin in the gastrointestinal tube. OBJECTIVE The aims of this study were to evaluate the absorption of the drug from the self-nano emulsifying drug delivery system of rosuvastatin (Ros SNEDDS) compared to rosuvastatin substance and to develop a level-A in vitro-in vivo correlation (IVIVC) for Ros SNEDDS. METHODS An in-house developed LC-MS/MS method was used to determine the concentrations of rosuvastatin in dog plasma. Six beagle dogs received an intravenous dose, Ros SNEDDS, rosuvastatin substance. In vitro dissolution of the Ros SNEDDS was carried out with different conditions. Correlation models were developed from the dissolution and absorption results of Ros SNEDDS. RESULTS The results showed a 1.7-fold enhanced oral bioavailability and 2.1-time increase of rosuvastatin Cmax in Ros SNEDDS form, compared to the rosuvastatin substance. A 900 ml dissolution medium of pH of 6.6 has demonstrated its suitability, the in vitro dissolution model was studied and supported by the Weibull equation with a weighting factor of 1/y2 as it presented the lowest values of AIC. CONCLUSION Ros SNEDDS demonstrated higher bioavailability of rosuvastatin in comparison to rosuvastatin substance and established a level A IVIVC used in future bioequivalence trials.
Collapse
Affiliation(s)
- Nghia Thi Phan
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
- Bioequivalence Centre, National Institute of Drug Quality Control, Hanoi, Vietnam
| | - Yen Thi Hai Tran
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Linh Tran Nguyen
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Yen Kieu Hoang
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Cuong Khac Bui
- Laboratory Animal Research Center, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoa Dang Nguyen
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Giang Thi Thu Vu
- Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| |
Collapse
|
9
|
Alhadrami HA, El-Din ASGS, Hassan HM, Sayed AM, Alhadrami AH, Rateb ME, Naguib DM. Development and Evaluation of a Self-Nanoemulsifying Drug Delivery System for Sinapic Acid with Improved Antiviral Efficacy against SARS-CoV-2. Pharmaceutics 2023; 15:2531. [PMID: 38004511 PMCID: PMC10674535 DOI: 10.3390/pharmaceutics15112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to develop a self-nanoemulsifying drug delivery system (SNE) for sinapic acid (SA) to improve its solubility and antiviral activity. Optimal components for the SA-SNE formulation were selected, including Labrafil as the oil, Cremophor EL as the surfactant, and Transcutol as the co-surfactant. The formulation was optimized using surface response design, and the optimized SA-SNE formulation exhibited a small globule size of 83.6 nm, high solubility up to 127.1 ± 3.3, and a 100% transmittance. In vitro release studies demonstrated rapid and high SA release from the formulation. Pharmacokinetic analysis showed improved bioavailability by 2.43 times, and the optimized SA-SNE formulation exhibited potent antiviral activity against SARS-CoV-2. The developed SA-SNE formulation can enhance SA's therapeutic efficacy by improving its solubility, bioavailability, and antiviral activity. Further in silico, modeling, and Gaussian accelerated molecular dynamics (GaMD)-based studies revealed that SA could interact with and inhibit the viral main protease (Mpro). This research contributes to developing effective drug delivery systems for poorly soluble drugs like SA, opening new possibilities for their application via nebulization in SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Hani A Alhadrami
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Centre, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
- Molecular Diagnostics Laboratory, King Abdulaziz University Hospital, P.O. Box 80402, Jeddah 21589, Saudi Arabia
| | - Ahmed S G Srag El-Din
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science & Technology, Gamasa City 35712, Egypt
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Albaraa H Alhadrami
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Demiana M Naguib
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62513, Egypt
| |
Collapse
|
10
|
Younis MK, Khalil IA, Younis NS, Fakhr Eldeen RR, Abdelnaby RM, Aldeeb RA, Taha AA, Hassan DH. Aceclofenac/Citronellol Oil Nanoemulsion Repurposing Study: Formulation, In Vitro Characterization, and In Silico Evaluation of Their Antiproliferative and Pro-Apoptotic Activity against Melanoma Cell Line. Biomedicines 2023; 11:2531. [PMID: 37760972 PMCID: PMC10525854 DOI: 10.3390/biomedicines11092531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Aceclofenac (ACF) is a widely used non-steroidal anti-inflammatory drug (NSAID) known for its effectiveness in treating pain and inflammation. Recent studies have demonstrated that ACF possesses antiproliferative properties, inhibiting the growth of cancer cells in various cancer cell lines. Citronellol, a monoterpenoid alcohol found in essential oils, exhibits antioxidant properties and activities such as inhibiting cell growth and acetylcholinesterase inhibition. In this study, the objective was to formulate and evaluate an aceclofenac/citronellol oil nanoemulsion for its antiproliferative effects on melanoma. The optimal concentrations of citronellol oil, Tween 80, and Transcutol HP were determined using a pseudoternary phase diagram. The formulated nanoemulsions were characterized for droplet size, zeta potential, thermophysical stability, and in vitro release. The selected formula (F1) consisted of citronellol oil (1 gm%), Tween 80 (4 gm%), and Transcutol HP (1 gm%). F1 exhibited a spherical appearance with high drug content, small droplet size, and acceptable negative zeta potential. The amorphous state of the drug in the nanoemulsion was confirmed by Differential Scanning Calorimetry, while FTIR analysis indicated its homogenous solubility. The nanoemulsion showed significant antiproliferative activity, with a lower IC50 value compared to aceclofenac or citronellol alone. Flow cytometric analysis revealed cell cycle arrest and increased apoptosis induced by the nanoemulsion. In silico studies provided insights into the molecular mechanism underlying the observed antitumor activity. In conclusion, the developed aceclofenac/citronellol oil nanoemulsion exhibited potent cytotoxicity and pro-apoptotic effects, suggesting its potential as a repurposed antiproliferative agent for melanoma treatment. In a future plan, further animal model research for validation is suggested.
Collapse
Affiliation(s)
- Mona K. Younis
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| | - Islam A. Khalil
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| | - Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Zagazig University Hospitals, Zagazig 44519, Egypt
| | - Rasha R. Fakhr Eldeen
- Department of Biochemistry, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt;
| | - Rana M. Abdelnaby
- Department Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reem A. Aldeeb
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| | - Amal A. Taha
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| | - Doaa H. Hassan
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| |
Collapse
|
11
|
Lim C, Lee D, Kim M, Lee S, Shin Y, Ramsey JD, Choi HG, Lee ES, Youn YS, Oh KT. Development of a sorafenib-loaded solid self-nanoemulsifying drug delivery system: Formulation optimization and characterization of enhanced properties. J Drug Deliv Sci Technol 2023; 82:104374. [PMID: 37124157 PMCID: PMC10139733 DOI: 10.1016/j.jddst.2023.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Sorafenib, marketed under the brand name Nexavar®, is a multiple tyrosine kinase inhibitor drug that has been actively used in the clinical setting for the treatment of several cancers. However, the low solubility and bioavailability of sorafenib constitute a significant barrier to achieving a good therapeutic outcome. We developed a sorafenib-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation composed of capmul MCM, tween 80, and tetraglycol, and demonstrated that the SNEDDS formulation could improve drug solubility with excellent self-emulsification ability. Moreover, the sorafenib-loaded SNEDDS exhibited anticancer activity against Hep3B and KB cells, which are the most commonly used hepatocellular carcinoma and oral cancer cell lines, respectively. Subsequently, to improve the storage stability and to increase the possibility of commercialization, a solid SNEDDS for sorafenib was further developed through the spray drying method using Aerosil® 200 and PVP K 30. X-ray diffraction and differential scanning calorimeter data showed that the crystallinity of the drug was markedly reduced, and the dissolution rate of the drug was further improved in formulation in simulated gastric and intestinal fluid conditions. In vivo study, the bioavailability of the orally administered formulation increases dramatically compared to the free drug. Our results highlight the use of the solid-SNEDDS formulation to enhance sorafenib's bioavailability and outlines potential translational directions for oral drug development.
Collapse
Affiliation(s)
- Chaemin Lim
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Dayoon Lee
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Mikyung Kim
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Subin Lee
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Yuseon Shin
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Jacob D. Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| |
Collapse
|
12
|
Lin L, Chen Q, Dai Y, Xia Y. Self-Nanoemulsifying Drug Delivery System for Enhanced Bioavailability of Madecassic Acid: In vitro and in vivo Evaluation. Int J Nanomedicine 2023; 18:2345-2358. [PMID: 37187996 PMCID: PMC10179365 DOI: 10.2147/ijn.s408115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
Purpose Madecassic acid (MCA) is a natural triterpenoid isolated from centellae herba that has diverse biological effects, such as anti-inflammatory, antioxidant, and anticancer activities. However, the efficacy of MCA is limited by low oral bioavailability caused by its extremely poor aqueous solubility. This study aimed to develop a self-nanoemulsifying drug delivery system (SNEDDS) for MCA to improve its oral absorption. Methods The utilized oil phases, surfactants, and co-surfactants for SNEDDS were selected based on the solubility of MCA and emulsification efficiency. The optimized formulation was characterized for pharmaceutical properties and its pharmacokinetic behavior was examined in rats. Besides, the intestinal absorption property of MCA was investigated using in situ single-pass intestinal perfusion and intestinal lymphatic transport. Results The optimized nanoemulsion formula consists of Capryol 90:Labrasol:Kolliphor ELP:Transcutol HP in a weight ratio of 1:2.7:2.7:3.6 (w/w/w/w). MCA-loaded SNEDDS presented a small droplet size (21.52 ± 0.23 nm), with a zeta potential value of -3.05 ± 0.3 mV. Compared with pure MCA, SNEDDS had a higher effective permeability coefficient and showed 8.47-fold and 4.01-fold of maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC), respectively. Cycloheximide was pretreated before the experiment to evaluate the degree of lymphatic uptake. The results showed that cycloheximide greatly influenced the absorption of SNEDDS, resulting in 82.26% and 76.98% reduction in Cmax and AUC, respectively. Conclusion This study reports the MCA-loaded SNEDDS with distinctly enhanced in vitro and in vivo performance compared with pure MCA and concludes that the SNEDDS formulation could be a viable and effective strategy for improving the dissolution rate and bioavailability of poor aqueous-soluble ingredients.
Collapse
Affiliation(s)
- Li Lin
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Qingyong Chen
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yue Dai
- Department of Traditional Chinese Medicine and Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- Correspondence: Yufeng Xia, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, 211198, People’s Republic of China, Tel +862583271400, Fax +862585301528, Email
| |
Collapse
|
13
|
Aldawsari HM, Naveen NR, Alhakamy NA, Goudanavar PS, Rao GK, Budha RR, Nair AB, Badr-Eldin SM. Compression-coated pulsatile chronomodulated therapeutic system: QbD assisted optimization. Drug Deliv 2022; 29:2258-2268. [PMID: 35838522 PMCID: PMC9477481 DOI: 10.1080/10717544.2022.2094500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulsatile drug delivery systems have drawn attention in contemporary research for designing chronotherapeutic systems. The current work aims to design pulsatile ketorolac tromethamine tablets using compression coating for delayed delivery with a lag time suitable for the treatment of morning stiffness in arthritis. Rapidly disintegrating core tablets of ketorolac tromethamine were formulated using super-disintegrants, and the optimized formulation was compression using PEO WSR coagulant and Eudragit RLPO for delaying the release. The central composite design and response surface methodology were employed to optimize the formulation and process parameters namely PEO WSR Coagulant (X1), Eudragit RLPO (X2), and Hardness (X3). The dependent variables optimized were lag time and time required for 95% drug release. Analysis using response surface graphs and mathematical modeling of the results allowed identifying and quantifying the formulation variables active on the selected responses. A polynomial equation fitted to the data was used to predict the composition with optimum responses. Compression-coated pulsatile tablets’ optimized composition exhibited a lag time of 9 h and released 95% of the ketorolac tromethamine in 17.42 h. Validation of the mathematical model assured the reliability of QBD in formulation design. In vivo X-ray imaging and pharmacokinetic studies established a strong relationship between the coated polymers maintaining the desired lag time for delayed delivery of the active to coincide with the chronobiology for enhanced bioavailability at the right time when needed.
Collapse
Affiliation(s)
- Hibah M Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - N Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prakash S Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India
| | - Gsn Koteswara Rao
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Roja Rani Budha
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Reddy MR, Gubbiyappa KS. Formulation development, optimization and characterization of Pemigatinib-loaded supersaturable self-nanoemulsifying drug delivery systems. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Pemigatinib is a small molecule tyrosine kinase inhibitor of fibroblast growth factor receptor inhibitors. The oral bioavailability of Pemigatinib is constricted due to its limited solubility at physiological pH. It is essential to develop a novel formulation of Pemigatinib to improve the intrinsic solubility and to reduce the pharmacokinetic variability. Self-nanoemulsifying drug delivery system is an effective, smart and more adequate formulation approach for poorly soluble drugs. Different from conventional self-nanoemulsifying drug delivery system, a supersaturable self-nanoemulsifying drug delivery system of Pemigatinib was prepared by using a supersaturation promoter.
Results
Among all the oils, Captex® 300 have shown maximum solubility of Pemigatinib. Considering the solubilization potential and emulsification ability Kolliphor®RH 40 was selected as surfactant. Transcutol®HP was selected as co-surfactant. The composition of oil, surfactant and co-surfactant was identified using phase diagrams and further adjusted by simplex-lattice design. HPMC K4M as precipitation inhibitor at 5% concentration resulted in effective supersaturating with increased self-emulsification time. The droplet of sSNEDDS ranges from 166.78 ± 3.14 to 178.86 ± 1.24 nm with PDI 0.212 – 0.256, which is significantly smaller than that observed with plain SNEDDS. TEM images revealed the spherical shape of the nanodroplets. The final optimized formulation formed spontaneous nanoemulsion within 15 secs when added to physiological fluids. The percent transmittance of the diluted formulation was found to be 99.12 ± 0.46. The viscosity was found to be 574 ± 26 centipoises indicating the good flow ability. FTIR and DSC studies indicated the amorphization of the drug. The dissolution profile of sSNEDDS indicated the faster release of drug compared to both pure drug suspension and SNEDDS formulation. The drug release rate is directly proportional to the concentration of the drug. The drug release from the insoluble matrix is a square root of time-dependent Fickian diffusion process. The formulation was found to be stable and transparent at all pH values and the percent transmittance was more than 95%. Any kind of separation or precipitation was not observed at different temperatures cycles. No significant difference was observed with all the samples exposed at different storage conditions.
Conclusions
This study demonstrated the feasibility of stabilizing and improving the in-vitro performance of self-nanoemulsifying drug delivery systems of Pemigatinib by incorporating HPMC K4M as precipitation inhibitor.
Collapse
|
15
|
Ali HSM, Ahmed SA, Alqurshi AA, Alalawi AM, Shehata AM, Alahmadi YM. Tadalafil-Loaded Self-Nanoemulsifying Chewable Tablets for Improved Bioavailability: Design, In Vitro, and In Vivo Testing. Pharmaceutics 2022; 14:1927. [PMID: 36145675 PMCID: PMC9504296 DOI: 10.3390/pharmaceutics14091927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
This research aimed to develop innovative self-nanoemulsifying chewable tablets (SNECT) to increase oral bioavailability of tadalafil (TDL), a nearly insoluble phosphodiesterase-5 inhibitor. Cinnamon essential oil, PEG 40 hydrogenated castor oil (Cremophor® RH 40), and polyethylene glycol 400 served as the oil, surfactant, and cosurfactant in the nanoemulsifying system, respectively. Primary liquid self-nanoemulsifying delivery systems (L-SNEDDS) were designed using phase diagrams and tested for dispersibility, droplet size, self-emulsifying capability, and thermodynamic stability. Adsorption on a carrier mix of silicon dioxide and microcrystalline cellulose was exploited to solidify the optimum L-SNEDDS formulation as self-nanoemulsifying granules (SNEG). Lack of crystalline TDL within the granules was verified by DSC and XRPD. SNEG were able to create a nanoemulsion instantaneously (165 nm), a little larger than the original nanoemulsion (159 nm). SNECT were fabricated by compressing SNEG with appropriate excipients. The obtained SNECT retained their quick dispersibility dissolving 84% of TDL within 30 min compared to only 18% dissolution from tablets of unprocessed TDL. A pharmacokinetic study in Sprague−Dawley rats showed a significant increase in Cmax (2.3-fold) and AUC0−24 h (5.33-fold) of SNECT relative to the unprocessed TDL-tablet (p < 0.05). The stability of TDL-SNECT was checked against dilutions with simulated GI fluids. In addition, accelerated stability tests were performed for three months at 40 ± 2 °C and 75% relative humidity. Results revealed the absence of obvious changes in size, PDI, or other tablet parameters before and after testing. In conclusion, current findings illustrated effectiveness of SNECT to enhance TDL dissolution and bioavailability in addition to facilitating dose administration.
Collapse
Affiliation(s)
- Hany S. M. Ali
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Sameh A. Ahmed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdulmalik A. Alqurshi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| | - Ali M. Alalawi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| | - Ahmed M. Shehata
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Yaser M. Alahmadi
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah P.O. Box 344, Saudi Arabia
| |
Collapse
|
16
|
Formulation-by-Design of Efinaconazole Spanlastic Nanovesicles for Transungual Delivery Using Statistical Risk Management and Multivariate Analytical Techniques. Pharmaceutics 2022; 14:pharmaceutics14071419. [PMID: 35890316 PMCID: PMC9324635 DOI: 10.3390/pharmaceutics14071419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
As regulatory and technical landscapes for pharmaceutical formulation development are rapidly evolving, a risk-management approach using multivariate analysis is highly essential for designing a product with requisite critical quality attributes (CQA). Efinaconazole, a newly approved poorly water-soluble antifungal triazole drug has poor permeability. Spanlastics, new-generation surfactant nanovesicles, being fluidic, help improve the permeability of drugs. Therefore, we optimized efinaconazole spanlastics using the concepts of Formulation-by-Design (FbD) and explored the feasibility of transungual delivery for the management of onychomycosis. Using the Ishikawa fishbone diagram, the risk factors that may have an impact on the CQA of efinaconazole spanlastic vesicles were identified. Application of the Plackett–Burman experimental design facilitated the screening of eight different formulation and process parameters influencing particle size, transmittance, relative deformability, zeta potential, entrapment efficiency, and dissolution efficiency. With the help of Pareto charts, the three most significant factors were identified, viz., vesicle builder (Span), edge activator (Tween), and mixing time. The levels of these three critical variables were optimized by FbD to reduce the particle size and maximize the transparency, relative deformability, encapsulation efficiency, and dissolution efficiency of efinaconazole spanlastic nanovesicles. Bayesian and Lenth’s analysis and mathematical modeling of the experimental data helped to quantify the critical formulation attributes required for getting the formulation with optimum quality features. The optimized efinaconazole-loaded spanlastic vesicles had a particle size of 197 nm, transparency of 91%, relative deformability of 12.5 min, and dissolution efficiency of 81.23%. The spanlastic formulation was incorporated into a gel and explored ex vivo for transungual delivery. This explorative study provides an example of the application of principles of risk management, statistical multivariate analysis, and the FbD approach in developing efinaconazole spanlastic nanovesicles.
Collapse
|
17
|
Influence of Chromatographic Conditions on LOD and LOQ of Fluoxetine and Sertraline Analyzed by TLC-Densitometric Method. Processes (Basel) 2022. [DOI: 10.3390/pr10050971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This research introduces the analysis of fluoxetine and sertraline by means of the TLC-densitometric method. They provide information on LOD and LOQ under various chromatographic conditions. The study used adsorption (NPTLC) and partition (RPTLC) thin-layer chromatography in combination with a densitometric analysis. Four types of chromatographic plates precoated with: silica gel 60 F254, silica gel 60, silanized silica gel 60 F254 (RP-2), and a mixture of silica gel 60 and kieselguhr F254, as well as three mobile phases: chloroform + methanol + ammonia (9:1:0.4, v/v/v), chloroform + methanol + glacial acetic acid (5:4:1, v/v/v), and acetone + toluene + ammonia (10:9:1, v/v/v), were used in NPTLC. RP-18F254 and silanized silica gel 60 F254 (RP-2) plates and four mobile phases: methanol + water (10:0 and 9:1, v/v), acetone + water (10:0 and 9:1, v/v), were used in RPTLC. The lowest LOD and LOQ values for fluoxetine were obtained using a silanized silica gel 60 F254 (RP-2) with acetone + toluene + ammonia (10:9:1, v/v/v) in NPTLC, and with a silanized silica gel 60 F254 (RP-2) in combination with methanol + water (10:0, v/v) in RPTLC. The lowest LOD and LOQ values of sertraline were obtained using a silica gel 60 with acetone + toluene + ammonia (10:9:1; v/v/v) in NPTLC. The smallest amount of sertraline was detected on the silanized silica gel 60 F254 plate in combination with methanol + water (9:1, v/v) in RPTLC. The obtained results provide important information that can give a good basis and set the direction for further, more detailed research; the results can also benefit other researchers who analyze fluoxetine and sertraline with the TLC technique in model systems (testing standards) as well as in drug and biological samples.
Collapse
|