1
|
Ni W, Lu Y, Wang W. Exploring the interconnected between type 2 diabetes mellitus and nonalcoholic fatty liver disease: Genetic correlation and Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e38008. [PMID: 38728519 PMCID: PMC11081543 DOI: 10.1097/md.0000000000038008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Epidemiological and clinical studies have indicated a higher risk of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), implying a potentially shared genetic etiology, which is still less explored. Genetic links between T2DM and NAFLD were assessed using linkage disequilibrium score regression and pleiotropic analysis under composite null hypothesis. European GWAS data have identified shared genes, whereas SNP-level pleiotropic analysis under composite null hypothesis has explored pleiotropic loci. generalized gene-set analysis of GWAS data determines pleiotropic pathways and tissue enrichment using eQTL mapping to identify associated genes. Mendelian randomization analysis was used to investigate the causal relationship between NAFLD and T2DM. Linkage disequilibrium score regression analysis revealed a strong genetic correlation between T2DM and NAFLD, and identified 24 pleiotropic loci. These single-nucleotide polymorphisms are primarily involved in biosynthetic regulation, RNA biosynthesis, and pancreatic development. generalized gene-set analysis of GWAS data analysis revealed significant enrichment in multiple brain tissues. Gene mapping using these 3 methods led to the identification of numerous pleiotropic genes, with differences observed in liver and kidney tissues. These genes were mainly enriched in pancreas, brain, and liver tissues. The Mendelian randomization method indicated a significantly positive unidirectional causal relationship between T2DM and NAFLD. Our study identified a shared genetic structure between NAFLD and T2DM, providing new insights into the genetic pathogenesis and mechanisms of NAFLD and T2DM comorbidities.
Collapse
Affiliation(s)
- Wenjuan Ni
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical Collage, Baotou, Inner Mongolia, China
| | - Yao Lu
- Baotou Medical Collage, Baotou, Inner Mongolia, China
| | - Wei Wang
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical Collage, Baotou, Inner Mongolia, China
| |
Collapse
|
2
|
Huang S, Song W, Jiang S, Li Y, Wang M, Yang N, Zhu H. Pharmacokinetic interactions between tacrolimus and Wuzhi capsule in liver transplant recipients: Genetic polymorphisms affect the drug interaction. Chem Biol Interact 2024; 391:110906. [PMID: 38340974 DOI: 10.1016/j.cbi.2024.110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Wuzhi capsule (WZC), a commonly used Chinese patent medicine to treat various types of liver dysfunction in China, increases the exposure of tacrolimus (TAC) in liver transplant recipients. However, this interaction has inter-individual variability, and the underlying mechanism remains unclear. Current research indicates that CYP3A4/5 and drug transporters influence the disposal of both drugs. This study aims to evaluate the association between TAC dose-adjusted trough concentration (C/D) and specific genetic polymorphisms of CYP3A4/5, drug transporters and pregnane x receptor (PXR), and plasma levels of major WZC components, deoxyschisandrin and γ-schisandrin, in liver transplant patients receiving both TAC and WZC. Liquid chromatography-tandem-mass spectrometry was used to detect the plasma levels of deoxyschisandrin and γ-schisandrin, and nine polymorphisms related to metabolic enzymes, transporters and PXR were genotyped by sequencing. A linear mixed model was utilized to assess the impact of the interaction between genetic variations and WZC components on TAC lnC/D. Our results indicate a significant association of TAC lnC/D with the plasma levels of deoxyschisandrin and γ-schisandrin. Univariate analysis demonstrated three polymorphisms in the genes ABCB1 (rs2032582), ABCC2 (rs2273697), ABCC2 (rs3740066), and PXR (rs3842689) interact with both deoxyschisandrin and γ-schisandrin, influencing the TAC lnC/D. In multiple regression model analysis, the interactions between deoxyschisandrin and both ABCB1 (rs2032582) and ABCC2 (rs3740066), post-operative day (β < 0.001, p < 0.001), proton pump inhibitor use (β = -0.152, p = 0.008), body mass index (β = 0.057, p < 0.001), and ABCC2 (rs717620, β = -0.563, p = 0.041), were identified as significant factors of TAC lnC/D, accounting for 47.89% of the inter-individual variation. In summary, this study elucidates the influence of the interaction between ABCB1 and ABCC2 polymorphisms with WZC on TAC lnC/D. These findings offer a scientific basis for their clinical interaction, potentially aiding in the individualized management of TAC therapy in liver transplant patients.
Collapse
Affiliation(s)
- Siqi Huang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Song
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan, China
| | - Shuangmiao Jiang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanchen Li
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Min Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, China
| | - Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, China.
| | - Huaijun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, China; Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, China.
| |
Collapse
|
3
|
Abad-Santos F, Aliño SF, Borobia AM, García-Martín E, Gassó P, Maroñas O, Agúndez JAG. Developments in pharmacogenetics, pharmacogenomics, and personalized medicine. Pharmacol Res 2024; 200:107061. [PMID: 38199278 DOI: 10.1016/j.phrs.2024.107061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
The development of Pharmacogenetics and Pharmacogenomics in Western Europe is highly relevant in the worldwide scenario. Despite the usually low institutional support, many research groups, composed of basic and clinical researchers, have been actively working for decades in this field. Their contributions made an international impact and paved the way for further studies and pharmacogenomics implementation in clinical practice. In this manuscript, that makes part of the Special Issue entitled Spanish Pharmacology, we present an analysis of the state of the art of Pharmacogenetics and Pharmacogenomics research in Europe, we compare it with the developments in Spain, and we summarize the most salient contributions since 1988 to the present, as well as recent developments in the clinical application of pharmacogenomics knowledge. Finally, we present some considerations on how we could improve translation to clinical practice in this specific scenario.
Collapse
Affiliation(s)
- Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), CIBEREHD, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.
| | - Salvador F Aliño
- Gene Therapy and Pharmacogenomics Group, Department of Pharmacology, Faculty of Medicine, Universitat de València, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, School of Medicine, Universidad Autónoma de Madrid (UAM), IdiPAZ, Madrid, Spain
| | - Elena García-Martín
- Department of Pharmacology, Universidad de Extremadura, Avda de la Universidad s/n, 10071 Cáceres, Spain
| | - Patricia Gassó
- Basic Clinical Practice Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona Clínic Schizophrenia Unit (BCSU), IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Olalla Maroñas
- Public Foundation of Genomic Medicine, Santiago University Hospital, Genomic Medicine group, Pharmacogenetics and Drug Discovery (GenDeM), CIBERER, Santiago Health Research Institute (IDIS), Galicia, Spain
| | - José A G Agúndez
- Universidad de Extremadura. University Institute of Molecular Pathology Biomarkers, Avda de las Ciencias s/n, 10071 Cáceres, Spain.
| |
Collapse
|
4
|
Concha J, Sangüesa E, Saez-Benito AM, Aznar I, Berenguer N, Saez-Benito L, Ribate MP, García CB. Importance of Pharmacogenetics and Drug-Drug Interactions in a Kidney Transplanted Patient. Life (Basel) 2023; 13:1627. [PMID: 37629484 PMCID: PMC10455535 DOI: 10.3390/life13081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Tacrolimus (TAC) is a narrow-therapeutic-range immunosuppressant drug used after organ transplantation. A therapeutic failure is possible if drug levels are not within the therapeutic range after the first year of treatment. Pharmacogenetic variants and drug-drug interactions (DDIs) are involved. We describe a patient case of a young man (16 years old) with a renal transplant receiving therapy including TAC, mycophenolic acid (MFA), prednisone and omeprazole for prophylaxis of gastric and duodenal ulceration. The patient showed great fluctuation in TAC blood concentration/oral dose ratio, as well as pharmacotherapy adverse effects (AEs) and frequent diarrhea episodes. Additionally, decreased kidney function was found. A pharmacotherapeutic follow-up, including pharmacogenetic analysis, was carried out. The selection of the genes studied was based on the previous literature (CYP3A5, CYP3A4, POR, ABCB1, PXR and CYP2C19). A drug interaction with omeprazole was reported and the nephrologist switched to rabeprazole. A lower TAC concentration/dose ratio was achieved, and the patient's condition improved. In addition, the TTT haplotype of ATP Binding Cassette Subfamily B member 1 (ABCB1) and Pregnane X Receptor (PXR) gene variants seemed to affect TAC pharmacotherapy in the studied patient and could explain the occurrence of long-term adverse effects post-transplantation. These findings suggest that polymorphic variants and co-treatments must be considered in order to achieve the effectiveness of the immunosuppressive therapy with TAC, especially when polymedicated patients are involved. Moreover, pharmacogenetics could influence the drug concentration at the cellular level, both in lymphocyte and in renal tissue, and should be explored in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. Pilar Ribate
- Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, E-50830 Zaragoza, Spain; (J.C.); (E.S.); (A.M.S.-B.); (I.A.); (N.B.); (L.S.-B.); (C.B.G.)
| | | |
Collapse
|
5
|
Association Studies in Clinical Pharmacogenetics. Pharmaceutics 2022; 15:pharmaceutics15010113. [PMID: 36678742 PMCID: PMC9867244 DOI: 10.3390/pharmaceutics15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
In recent times, the progress of Clinical Pharmacogenetics has been remarkable [...].
Collapse
|