1
|
Prego-Domínguez J, Laso-García F, Palomar-Alonso N, Pérez-Mato M, López-Arias E, Dopico-López A, Hervella P, Gutiérrez-Fernández M, Alonso de Leciñana M, Polo E, Pelaz B, del Pino P, Campos F, Correa-Paz C. Nanoparticles for Thrombolytic Therapy in Ischemic Stroke: A Systematic Review and Meta-Analysis of Preclinical Studies. Pharmaceutics 2025; 17:208. [PMID: 40006575 PMCID: PMC11859612 DOI: 10.3390/pharmaceutics17020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Recombinant tissue plasminogen activator (rtPA) remains the standard thrombolytic treatment for ischemic stroke. Different types of nanoparticles have emerged as promising tools to improve the benefits and decrease the drawbacks of this therapy. Among them, cell membrane-derived (CMD) nanomedicines have gained special interest due to their capability to increase the half-life of particles in blood, biocompatibility, and thrombus targeting. In order to update and evaluate the efficacy of these nanosystems, we performed a meta-analysis of the selected in vivo preclinical studies. Methods: Preclinical in vivo studies in ischemic stroke models have been identified through a search in the Pubmed database. We included studies of rtPA-nanoparticles, which assessed infarct volume and/or neurological improvement. Nanosystems were compared with free (non-encapsulated) rtPA treatment. Standardized mean differences were computed and pooled to estimate effect sizes for lesion volumes and neurological scores. Subgroup analyses by the risk of bias, type of nanoparticle, and time of administration were also performed. Results: A total of 18 publications were included in the meta-analysis. This was based on defined search inclusion criteria. Our analysis revealed that rtPA-nanoparticles improved both lesion volume and neurological scores compared with the free rtPA treatment. Moreover, CMD nanomedicines showed better evolution of infarct volume compared to the other nanoparticles. Funnel plots of lesion volume exhibited asymmetry and publication bias. Heterogeneity was generally high, and the funnel plot and Egger test showed some evidence of publication bias that did not achieve statistical significance in the trim-and-fill analysis. Conclusions: rtPA-encapsulating nanosystems were shown to decrease infarct volume and improve neurological scales compared to the standard treatment, and CMD nanomedicines had the greatest beneficial effect.
Collapse
Affiliation(s)
- Jesús Prego-Domínguez
- Head of Epidemiologic Surveillance Service, Public Health General Directorate, Consellería de Sanidade, 15703 Santiago de Compostela, Spain;
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research–idiPAZ, La Paz University Hospital-Universidad Autónoma de Madrid, 28049 Madrid, Spain; (F.L.-G.); (M.G.-F.); (M.A.d.L.)
| | - Nuria Palomar-Alonso
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.P.-A.); (M.P.-M.); (E.L.-A.); (A.D.-L.)
| | - María Pérez-Mato
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.P.-A.); (M.P.-M.); (E.L.-A.); (A.D.-L.)
| | - Esteban López-Arias
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.P.-A.); (M.P.-M.); (E.L.-A.); (A.D.-L.)
| | - Antonio Dopico-López
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.P.-A.); (M.P.-M.); (E.L.-A.); (A.D.-L.)
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Rúa Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain;
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research–idiPAZ, La Paz University Hospital-Universidad Autónoma de Madrid, 28049 Madrid, Spain; (F.L.-G.); (M.G.-F.); (M.A.d.L.)
| | - María Alonso de Leciñana
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research–idiPAZ, La Paz University Hospital-Universidad Autónoma de Madrid, 28049 Madrid, Spain; (F.L.-G.); (M.G.-F.); (M.A.d.L.)
| | - Ester Polo
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (E.P.); (B.P.); (P.d.P.)
| | - Beatriz Pelaz
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (E.P.); (B.P.); (P.d.P.)
| | - Pablo del Pino
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (E.P.); (B.P.); (P.d.P.)
| | - Francisco Campos
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.P.-A.); (M.P.-M.); (E.L.-A.); (A.D.-L.)
| | - Clara Correa-Paz
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research–idiPAZ, La Paz University Hospital-Universidad Autónoma de Madrid, 28049 Madrid, Spain; (F.L.-G.); (M.G.-F.); (M.A.d.L.)
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.P.-A.); (M.P.-M.); (E.L.-A.); (A.D.-L.)
| |
Collapse
|
2
|
Yadav VK, Gupta R, Assiri AA, Uddin J, Ishaqui AA, Kumar P, Orayj KM, Tahira S, Patel A, Choudhary N. Role of Nanotechnology in Ischemic Stroke: Advancements in Targeted Therapies and Diagnostics for Enhanced Clinical Outcomes. J Funct Biomater 2025; 16:8. [PMID: 39852564 PMCID: PMC11766075 DOI: 10.3390/jfb16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Each year, the number of cases of strokes and deaths due to this is increasing around the world. This could be due to work stress, lifestyles, unhealthy food habits, and several other reasons. Currently, there are several traditional methods like thrombolysis and mechanical thrombectomy for managing strokes. The current approach has several limitations, like delayed diagnosis, limited therapeutic delivery, and risks of secondary injuries. So, there is a need for some effective and reliable methods for the management of strokes, which could help in early diagnosis followed by the treatment of strokes. Nanotechnology has played an immense role in managing strokes, and recently, it has emerged as a transformative solution offering innovative diagnostic tools and therapeutic strategies. Nanoparticles (NPs) belonging to several classes, including metallic (metallic and metal oxide), organic (lipids, liposome), and carbon, can cross the blood-brain barrier and may exhibit immense potential for managing various strokes. Moreover, these NPs have exhibited promise in improving imaging specificity and therapeutic delivery by precise drug delivery and real-time monitoring of treatment efficacy. Nanomaterials like cerium oxide (CeO2) and liposome-encapsulated agents have neuroprotective properties that reduce oxidative stress and promote neuroregeneration. In the present article, the authors have emphasized the significant advancements in the nanomedicine management of stroke, including NPs-based drug delivery systems, neuroprotective and neuroregenerative therapies, and multimodal imaging advancements.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - Rachna Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382021, Gujarat, India;
| | - Abdullah A. Assiri
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Azfar A. Ishaqui
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India;
| | - Khalid M. Orayj
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Shazia Tahira
- Institute of Professional Psychology, Bahria University Karachi Campus, Karachi 75260, Pakistan;
- Department of Psychiatry, Jinnah Postgraduate Medical Centre, Karachi 75510, Pakistan
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
- Department of Lifesciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India
| |
Collapse
|
3
|
Balkrishna A, Mishra S, Rana M, Rajput SK, Pathak S, Liu K, Dhanasekaran M, Arya V, Singh S. Small molecule inhibitors target multiple neuropathological signaling to exert novel neuroprotection in intracranial aneurysms. Front Pharmacol 2024; 15:1469211. [PMID: 39575394 PMCID: PMC11578703 DOI: 10.3389/fphar.2024.1469211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 11/24/2024] Open
Abstract
Intracranial aneurysms (IAs) represent a critical health concern due to their potential to rupture, leading to severe morbidity and mortality. Small molecule inhibitors (SMIs) have emerged as promising therapeutic candidates for managing IA progression and rupture risk. The current landscape of SMIs targets various molecular pathways implicated in IA pathogenesis, including inflammation, endothelial dysfunction, and extracellular matrix (ECM) degradation. Among the prominent therapeutic candidates discussed are statins, recognized for their multifaceted effects, anti-inflammatory properties, and enhancement of endothelial stability, which may mitigate IA progression. Matrix metalloproteinase inhibitors are also highlighted for their role in preserving ECM structural integrity, essential for preventing IA wall weakening and rupture. Furthermore, the review evaluates the efficacy of anti-inflammatory agents such as corticosteroids and cytokine inhibitors in attenuating IA growth driven by inflammatory processes. Our findings highlight the possibility of several pharmaceutical therapies that target matrix remodeling, inflammation, and other underlying processes to manage cerebral aneurysms. By precisely delivering therapeutic chemicals, such as antioxidants, gene therapy vectors, or anti-inflammatory medicines, to the aneurysm site, these SMI technologies treat the underlying pathophysiological causes while sparing healthy brain tissue. This review underscores the potential of SMIs as adjunctive or primary therapies in the comprehensive management of IAs, emphasizing the need for further clinical research to optimize their efficacy and safety in clinical practice.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, India
| | - Shalini Mishra
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, India
| | - Maneesha Rana
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, India
| | - Satyendra Kumar Rajput
- Department of Pharmaceutical Sciences, Gurukula Kangri (Deemed to be University), Haridwar, India
| | - Suhrud Pathak
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, United States
| | - Keyi Liu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, United States
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, United States
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, India
| | - Shalini Singh
- Department of Pharmaceutical Sciences, Gurukula Kangri (Deemed to be University), Haridwar, India
| |
Collapse
|
4
|
Zhong H, Hussain M, Hussain K, Wang L, Abdullah, Qayum A, S Hamed Y, Guan R. Nanoliposomes a future based delivery vehicle of cyanidin-3-O-glucoside against major chronic disease. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39097751 DOI: 10.1080/10408398.2024.2384646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
BACKGROUND Cyanidin-3-O-glucoside (C3G), is an anthocyanin mainly found in berries, and can also be produced by microorganisms. It has been traditionally used as a natural coloring agent for decades. Recently, it has been investigated for its high antioxidant activity and anti-cancer attributes. C3G has low bioavailability and is sensitive to oxidation and gastric pH; therefore, it is encapsulated in nanoliposomes to enhance its bio-availability, targeted delivery- and efficacy against chronic disease. SCOPE AND APPROACH In this review, the role of C3G nanoliposomes against major chronic diseases has been discussed. The focus was on research findings and the mechanism of action to affect the proliferation of cancer, neuro disease and cardiovascular problems. It also discussed the formulation of nanoliposomes, their role in nutraceutical delivery and enhancement in C3G bioavailability. KEY FINDINGS AND CONCLUSIONS Data suggested that nanoliposomes safeguard C3G, enhance bioavailability, and ensure safe, adequate and targeted delivery. It can reduce the impact of cancer and inflammation by inhibiting the ß-catenin/O6-methylguanine-DNA methyltransferase (MGMT) pathway and upregulating miR-214-5p. Formation of C3G nanoliposomes significantly enhances the nutraceutical efficacy of C3G against major chronic disease therefore, C3G nanoliposomes might be a future-based nutraceutical to treat major chronic diseases, including cancer, neuro problems and CVD, but challenges remain in finding correct dose and techniques to maximize its efficacy.
Collapse
Affiliation(s)
- Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Muhammad Hussain
- Moganshan Institute ZJUT, Kangqian District, Deqing, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
| | - Kifayat Hussain
- Departments of Animal Nutrition, Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Lingmiao Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yahya S Hamed
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Moganshan Institute ZJUT, Kangqian District, Deqing, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Song C, Li Y, Han H, Zhang Y, Wang N. Lipid nanoparticle-encapsulated lncRNA DLX6-AS1 knockdown ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis. Neurol Res 2024; 46:706-716. [PMID: 38735062 DOI: 10.1080/01616412.2024.2345024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/13/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE Cerebral ischemia is a neurological disorder that leads to permanent disability. This research focuses on exploring the ameliorative effects of lipid nanoparticle (LNP)-encapsulated lncRNA DLX6-AS1 knockdown in cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis. METHODS LNP-encapsulated lncRNA DLX6-AS1 was prepared. Cerebral ischemic injury mouse models were established utilizing middle cerebral artery occlusion (MCAO). The mice were treated by intravenous injection of LNP-encapsulated lncRNA DLX6-AS1. The neurological deficits, Inflammatory factor levels, pathological characteristics were observed. In vitro N2a cell oxygen and glucose deprivation (OGD) models were established, and the cells were treated with LNP-encapsulated lncRNA DLX6-AS1 or Nrf2 inhibitor (ML385). Cell viability and apoptosis were tested. DLX6-AS1, Nrf2, HO-1, and NLRP3 expression levels were assessed. RESULTS LncRNA DLX6-AS1 levels were elevated in the brain tissues of mice with cerebral ischemic injury and OGD-induced N2a cells. LNP-encapsulated DLX6-AS1 siRNA (si-DLX6-AS1) improved neurological deficit scores, reduced the levels of inflammatory factors, improved brain tissue pathological damage, and raised the number of survival neurons in CA1. LNP-encapsulated si-DLX6-AS1 ameliorated the OGD-induced N2a cell viability decrease and apoptosis rate increase, and ML385 (Nrf2 inhibitor) reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1. In cerebral ischemic injury mice and OGD-induced N2a cells, Nrf2 and HO-1 levels were reduced and NLRP3 levels were increased. LNP-encapsulated si-DLX6-AS1 raised Nrf2 and HO-1 levels and reduced NLRP3 levels. Nrf2 inhibitor ML385 treatment reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1 on OGD-induced N2a cell viability and apoptosis. CONCLUSION Lipid nanoparticle-encapsulated si-DLX6-AS1 ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.
Collapse
Affiliation(s)
- Chang Song
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huiying Han
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yueyue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Thomas RG, Kim JH, Kim JH, Yoon J, Choi KH, Jeong YY. Treatment of Ischemic Stroke by Atorvastatin-Loaded PEGylated Liposome. Transl Stroke Res 2024; 15:388-398. [PMID: 36639607 DOI: 10.1007/s12975-023-01125-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
There is insufficient evidence on the effect of nanoparticles, particularly liposomes loaded with a statin, on acute ischemic stroke. We investigated the impact of atorvastatin-loaded PEG (polyethylene glycol) conjugated liposomes (LipoStatin) on the outcomes in rats with cerebral ischemia-reperfusion. PEGylated liposome loaded with atorvastatin was developed as a nanoparticle to specifically accumulate in an ischemic region and release the drug to ameliorate the harmful effects of the stroke. LipoStatin was administered to rats with transient middle cerebral artery occlusion through the tail vein immediately after reperfusion (LipoStatin group). LipoStatin efficiently accumulated at the cerebral ischemic injury site of the rat. The LipoStatin group showed a significantly reduced infarct volume (p < 0.01) in brain micro-MR imaging and improved neurological function recovery compared to the control group (p < 0.05). In addition, markedly improved brain metabolism using fluorine-18 fluorodeoxyglucose micro-PET/CT imaging was demonstrated in the LipoStatin group compared with the control group (p < 0.01). Mechanistically, as a result of evaluation through IL-1 beta, TNF-alpha, ICAM-1, and Iba-1 mRNA expression levels at 5 days after cerebral ischemia, LipoStatin showed significant anti-inflammatory effects. Protein expression of occludin, JAM-A, Caveolin-1, and eNOS by western blot at 3 days and fluorescent images at 7 days showed considerable recovery of blood-brain barrier breakdown and endothelial dysfunction. PEGylated LipoStatin can be more effectively delivered to the ischemic brain and may have significant neuroprotective effects. Thus, PEGylated LipoStatin can be further developed as a promising targeted therapy for ischemic stroke and other major vascular diseases.
Collapse
Affiliation(s)
- Reju George Thomas
- Department of Radiology, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-Do, 58128, South Korea
| | - Ja-Hae Kim
- Department of Nuclear Medicine, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Ji-Hye Kim
- Department of Neurology, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-Do, 58128, South Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Kang-Ho Choi
- Department of Neurology, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-Do, 58128, South Korea.
| | - Yong-Yeon Jeong
- Department of Radiology, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-Do, 58128, South Korea.
| |
Collapse
|
7
|
Migliavacca M, Correa-Paz C, Pérez-Mato M, Bielawski PB, Zhang I, Marie P, Hervella P, Rubio M, Maysinger D, Vivien D, Del Pino P, Pelaz B, Polo E, Campos F. Thrombolytic therapy based on lyophilized platelet-derived nanocarriers for ischemic stroke. J Nanobiotechnology 2024; 22:10. [PMID: 38166940 PMCID: PMC10763438 DOI: 10.1186/s12951-023-02206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Intravenous administration of fibrinolytic drugs, such as recombinant tissue plasminogen activator (rtPA) is the standard treatment of acute thrombotic diseases. However, current fibrinolytics exhibit limited clinical efficacy because of their short plasma half-lives and risk of hemorrhagic transformations. Platelet membrane-based nanocarriers have received increasing attention for ischemic stroke therapies, as they have natural thrombus-targeting activity, can prolong half-life of the fibrinolytic therapy, and reduce side effects. In this study we have gone further in developing platelet-derived nanocarriers (defined as cellsomes) to encapsulate and protect rtPA from degradation. Following lyophilization and characterization, their formulation properties, biocompatibility, therapeutic effect, and risk of hemorrhages were later investigated in a thromboembolic model of stroke in mice. RESULTS Cellsomes of 200 nm size and loaded with rtPA were generated from membrane fragments of human platelets. The lyophilization process did not influence the nanocarrier size distribution, morphology, and colloidal stability conferring particle preservation and long-term storage. Encapsulated rtPA in cellsomes and administered as a single bolus showed to be as effective as a continuous clinical perfusion of free rtPA at equal concentration, without increasing the risk of hemorrhagic transformations or provoking an inflammatory response. CONCLUSIONS This study provides evidence for the safe and effective use of lyophilized biomimetic platelet-derived nanomedicine for precise thrombolytic treatment of acute ischemic stroke. In addition, this new nanoformulation could simplify the clinical use of rtPA as a single bolus, being easier and less time-consuming in an emergency setting than a treatment perfusion, particularly in stroke patients. We have successfully addressed one of the main barriers to drug application and commercialization, the long-term storage of nanomedicines, overcoming the potential chemical and physical instabilities of nanomedicines when stored in an aqueous buffer.
Collapse
Affiliation(s)
- Martina Migliavacca
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - María Pérez-Mato
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Patrick-Brian Bielawski
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Pauline Marie
- UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Marina Rubio
- UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Denis Vivien
- UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
- Department of Clinical Research, Caen Normandie University Hospital, Caen, France
| | - Pablo Del Pino
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Beatriz Pelaz
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - Ester Polo
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Liu Z, Xia Q, Ma D, Wang Z, Li L, Han M, Yin X, Ji X, Wang S, Xin T. Biomimetic nanoparticles in ischemic stroke therapy. DISCOVER NANO 2023; 18:40. [PMID: 36969494 PMCID: PMC10027986 DOI: 10.1186/s11671-023-03824-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/07/2023] [Indexed: 05/28/2023]
Abstract
Abstract Ischemic stroke is one of the most severe neurological disorders with limited therapeutic strategies. The utilization of nanoparticle drug delivery systems is a burgeoning field and has been widely investigated. Among these, biomimetic drug delivery systems composed of biogenic membrane components and synthetic nanoparticles have been extensively highlighted in recent years. Biomimetic membrane camouflage presents an effective strategy to prolong circulation, reduce immunogenicity and enhance targeting. For one thing, biomimetic nanoparticles reserve the physical and chemical properties of intrinsic nanoparticle. For another, the biological functions of original source cells are completely inherited. Compared to conventional surface modification methods, this approach is more convenient and biocompatible. In this review, membrane-based nanoparticles derived from different donor cells were exemplified. The prospect of future biomimetic nanoparticles in ischemic stroke therapy was discussed. Graphic abstract
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Qian Xia
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Dengzhen Ma
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Zhihai Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
| | - Longji Li
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
| | - Xianyong Yin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| |
Collapse
|
9
|
Li W, Liu J, Zhang Q, Ma X, Duan J, Wang J, Tian Y, Shi W. Bioinformatics analysis identifies the protective targets of omentin in mice with focal cerebral ischemia injury. Prostaglandins Other Lipid Mediat 2023; 169:106780. [PMID: 37704123 DOI: 10.1016/j.prostaglandins.2023.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Omentin is known to play a protective role in ischemic stroke. However, its regulatory networks and downstream targets in the pathogenesis of IS are incompletely revealed now. In this study, the model of photochemical brain ischemia was constructed after omentin over-expression. 8 key differentially expressed genes (DEGs) were obtained and analyzed by transcriptome analysis. These DEGs were mainly related to the negative regulation of hormone secretion, cellular phosphate ion homeostasis, and other pathways. Moreover, the mRNA expression of predicted gene 3435 (Gm3435), ankyrin repeat domain 53 (Ankrd53), fibroblast growth factor 23 (Fgf23) and the Fgf23 protein expression were down-regulated after omentin over-expression in HT22 cells injured by oxygen-glucose deprivation (OGD). In conclusion, our findings identified 8 key DEGs regulated by omentin after IS. In vitro models, the Gm3435, Ankrd53, Fgf23 mRNA expression and the Fgf23 protein expression were further verified to consistent with the transcriptomics results.
Collapse
Affiliation(s)
- Wu Li
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China
| | - Jie Liu
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China
| | - Qi Zhang
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; The College of Life Sciences, Northwest University, Shaanxi, Xi'an 710069, China
| | - Xiaojuan Ma
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China
| | - Jinwei Duan
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China
| | - Jiachen Wang
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; The College of Life Sciences, Northwest University, Shaanxi, Xi'an 710069, China
| | - Ye Tian
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China.
| | - Wenzhen Shi
- Clinical Medical Research Center, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Shaanxi, Xi'an 710018, China.
| |
Collapse
|
10
|
Gao HM, Chen H, Cui GY, Hu JX. Damage mechanism and therapy progress of the blood-brain barrier after ischemic stroke. Cell Biosci 2023; 13:196. [PMID: 37915036 PMCID: PMC10619327 DOI: 10.1186/s13578-023-01126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/04/2023] [Indexed: 11/03/2023] Open
Abstract
The blood-brain barrier (BBB) serves as a defensive line protecting the central nervous system, while also maintaining micro-environment homeostasis and inhibiting harmful materials from the peripheral blood. However, the BBB's unique physiological functions and properties make drug delivery challenging for patients with central nervous system diseases. In this article, we briefly describe the cell structure basis and mechanism of action of the BBB, as well as related functional proteins involved. Additionally, we discuss the various mechanisms of BBB damage following the onset of an ischemic stroke, and lastly, we mention several therapeutic strategies accounting for impairment mechanisms. We hope to provide innovative ideas for drug delivery research via the BBB.
Collapse
Affiliation(s)
- Hui-Min Gao
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Gui-Yun Cui
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Jin-Xia Hu
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China.
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China.
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
11
|
Reid MM, Kautzmann MAI, Andrew G, Obenaus A, Mukherjee PK, Khoutorova L, Ji JX, Roque CR, Oria RB, Habeb BF, Belayev L, Bazan NG. NPD1 Plus RvD1 Mediated Ischemic Stroke Penumbra Protection Increases Expression of Pro-homeostatic Microglial and Astrocyte Genes. Cell Mol Neurobiol 2023; 43:3555-3573. [PMID: 37270727 PMCID: PMC10477115 DOI: 10.1007/s10571-023-01363-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
Neuroprotection to attenuate or block the ischemic cascade and salvage neuronal damage has been extensively explored for treating ischemic stroke. However, despite increasing knowledge of the physiologic, mechanistic, and imaging characterizations of the ischemic penumbra, no effective neuroprotective therapy has been found. This study focuses on the neuroprotective bioactivity of docosanoid mediators: Neuroprotectin D1 (NPD1), Resolvin D1 (RvD1), and their combination in experimental stroke. Molecular targets of NPD1 and RvD1 are defined by following dose-response and therapeutic window. We demonstrated that treatment with NPD1, RvD1, and combination therapy provides high-grade neurobehavioral recovery and decreases ischemic core and penumbra volumes even when administered up to 6 h after stroke. The expression of the following genes was salient: (a) Cd163, an anti-inflammatory stroke-associated gene, was the most differentially expressed gene by NPD1+RvD1, displaying more than a 123-fold upregulation in the ipsilesional penumbra (Lisi et al., Neurosci Lett 645:106-112, 2017); (b) 100-fold upregulation takes place in astrocyte gene PTX3, a key regulator of neurogenesis and angiogenesis after cerebral ischemia (. Rodriguez-Grande et al., J Neuroinflammation 12:15, 2015); and (c) Tmem119 and P2y12, two markers of homeostatic microglia, were found to be enhanced by ten- and fivefold, respectively (Walker et al. Int J Mol Sci 21:678, 2020). Overall, we uncovered that protection after middle cerebral artery occlusion (MCAo) by the lipid mediators elicits expression of microglia and astrocyte-specific genes (Tmem119, Fcrls, Osmr, Msr1, Cd68, Cd163, Amigo2, Thbs1, and Tm4sf1) likely participating in enhancing homeostatic microglia, modulating neuroinflammation, promoting DAMP clearance, activating NPC differentiation and maturation, synapse integrity and contributing to cell survival.
Collapse
Affiliation(s)
- Madigan M Reid
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Gethein Andrew
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California, Irvine, CA, 92618, USA
| | - Pranab K Mukherjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Larissa Khoutorova
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Jeff X Ji
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Cassia R Roque
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Reinaldo B Oria
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Bola F Habeb
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St, Suite 9B16, Room 935A, New Orleans, LA, 70112, USA.
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, Neuroscience Center of Excellence, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Wang D, Li B, Wang S, Hao Y, Wang H, Sun W, Cao J, Zhou X, Zheng B. Engineered inhaled nanocatalytic therapy for ischemic cerebrovascular disease by inducing autophagy of abnormal mitochondria. NPJ Regen Med 2023; 8:44. [PMID: 37567914 PMCID: PMC10421937 DOI: 10.1038/s41536-023-00315-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondrial dysfunction and subsequent accumulation of reactive oxygen species (ROS) are key contributors to the pathology of ischemic cerebrovascular disease. Therefore, elimination of ROS and damaged mitochondria is crucial for the effective treatment of this disease. For this purpose, we designed an inhalation nanotherapeutic agent, P/D@Mn/Co3O4, to treat ischemic cerebrovascular disease. Mn/Co3O4 effectively removed excess ROS from cells, reduced acute cellular oxidative stress, and protected neural cells from apoptosis. Furthermore, it depleted the H+ surrounding mitochondria and depolarized the mitochondrial membrane potential, inducing mitophagy and eliminating abnormal mitochondria, thereby avoiding the continuous overproduction of ROS by eliminating the source of ROS regeneration. On intranasal administration, Mn/Co3O4 encapsulated by platelet membranes and 2,3-(dioxy propyl)-trimethylammonium chloride can bypass the blood-brain barrier, enter the brain through the trigeminal and olfactory pathways, and target inflammatory regions to remove ROS and damaged mitochondria from the lesion area. In rat models of stroke and vascular dementia, P/D@Mn/Co3O4 effectively inhibited the symptoms of acute and chronic cerebral ischemia by scavenging ROS and damaged mitochondria in the affected area. Our findings indicate that the nanotherapeutic agent developed in this study can be used for the effective treatment of ischemic cerebrovascular disease.
Collapse
Affiliation(s)
- Deping Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin, 300072, China
| | - Shuchao Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin, 300072, China
| | - Yingjian Hao
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Hua Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Wei Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin, 300072, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Xin Zhou
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
13
|
Fukuta T, Ikeda-Imafuku M, Iwao Y. Development of Edaravone Ionic Liquids and Their Application for the Treatment of Cerebral Ischemia/Reperfusion Injury. Mol Pharm 2023. [PMID: 37155370 DOI: 10.1021/acs.molpharmaceut.3c00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Preparation of the ionic liquid (IL) form of active pharmaceutical ingredients (APIs), termed API-IL, has attracted attention because it can improve upon certain disadvantages of APIs, such as poor water solubility and low stability. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a clinically approved cerebroprotective agent against ischemic stroke and amyotrophic lateral sclerosis, while new formulations that enable improvement of its physicochemical properties and biodistribution are desired. Herein, we report a newly developed API-IL of edaravone (edaravone-IL), in which edaravone is used as an anionic molecule. We investigated the physicochemical properties of edaravone-IL and its therapeutic effect against cerebral ischemia/reperfusion (I/R) injury, a secondary injury after an ischemic stroke. Among the cationic molecules used for edaravone-IL preparation, the IL prepared with tetrabutylphosphonium cation existed as a liquid at room temperature, and significantly increased the water solubility of edaravone without decreasing its antioxidative activity. Importantly, edaravone-IL formed negatively charged nanoparticles upon suspension in water. Intravenous administration of edaravone-IL showed significantly higher blood circulation time and lower distribution in the kidney compared with edaravone solution. Moreover, edaravone-IL significantly suppressed brain cell damage and motor functional deficits in model rats of cerebral I/R injury and showed comparable cerebroprotective effect to edaravone. Taken together, these results suggest that edaravone-IL could be a new form of edaravone with superior physicochemical properties and could be useful for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Mayumi Ikeda-Imafuku
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Yasunori Iwao
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| |
Collapse
|
14
|
Qin Y, Li X, Qiao Y, Zou H, Qian Y, Li X, Zhu Y, Huo W, Wang L, Zhang M. DTI-ALPS: An MR biomarker for motor dysfunction in patients with subacute ischemic stroke. Front Neurosci 2023; 17:1132393. [PMID: 37065921 PMCID: PMC10102345 DOI: 10.3389/fnins.2023.1132393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
PurposeBrain glymphatic dysfunction is involved in the pathologic process of acute ischemic stroke (IS). The relationship between brain glymphatic activity and dysfunction in subacute IS has not been fully elucidated. Diffusion tensor image analysis along the perivascular space (DTI-ALPS) index was used in this study to explore whether glymphatic activity was related to motor dysfunction in subacute IS patients.MethodsTwenty-six subacute IS patients with a single lesion in the left subcortical region and 32 healthy controls (HCs) were recruited in this study. The DTI-ALPS index and DTI metrics (fractional anisotropy, FA, and mean diffusivity, MD) were compared within and between groups. Spearman's and Pearson's partial correlation analyses were performed to analyze the relationships of the DTI-ALPS index with Fugl-Meyer assessment (FMA) scores and with corticospinal tract (CST) integrity in the IS group, respectively.ResultsSix IS patients and two HCs were excluded. The left DTI-ALPS index of the IS group was significantly lower than that of the HC group (t = −3.02, p = 0.004). In the IS group, a positive correlation between the left DTI-ALPS index and the simple Fugl-Meyer motor function score (ρ = 0.52, p = 0.019) and a significant negative correlation between the left DTI-ALPS index and the FA (R = −0.55, p = 0.023) and MD (R = −0.48, p = 0.032) values of the right CST were found.ConclusionsGlymphatic dysfunction is involved in subacute IS. DTI-ALPS could be a potential magnetic resonance (MR) biomarker of motor dysfunction in subacute IS patients. These findings contribute to a better understanding of the pathophysiological mechanisms of IS and provide a new target for alternative treatments for IS.
Collapse
Affiliation(s)
- Yue Qin
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Xin Li
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Yanqiang Qiao
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Huili Zou
- Department of Rehabilitation Medicine, Xi'an Daxing Hospital, Xi'an, China
| | - Yifan Qian
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Xiaoshi Li
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Yinhu Zhu
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
| | - Wenli Huo
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, China
- Lei Wang
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Ming Zhang
| |
Collapse
|
15
|
One-Step Pharmaceutical Preparation of PEG-Modified Exosomes Encapsulating Anti-Cancer Drugs by a High-Pressure Homogenization Technique. Pharmaceuticals (Basel) 2023; 16:ph16010108. [PMID: 36678605 PMCID: PMC9865360 DOI: 10.3390/ph16010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The use of exosomes encapsulating therapeutic agents for the treatment of diseases is of increasing interest. However, some concerns such as limited efficiency and scalability of conventional drug encapsulation methods to exosomes have still remained; thus, a new approach that enables encapsulation of therapeutic agents with superior efficiency and scalability is required. Herein, we used RAW264 macrophage cell-derived exosomes (RAW-Exos) and demonstrated that high-pressure homogenization (HPH) using a microfluidizer decreased their particle size without changing their morphology, the amount of exosomal marker proteins, and cellular uptake efficiency into RAW264 and colon-26 cancer cells. Moreover, HPH allowed for modification of polyethylene glycol (PEG)-conjugated lipids onto RAW-Exos, as well as encapsulation of the anti-cancer agent doxorubicin. Importantly, the doxorubicin encapsulation efficiency became higher upon increasing the process pressure and simultaneous HPH with PEG-lipids. Moreover, treatment with PEG-modified RAW-Exos encapsulating doxorubicin significantly suppressed tumor growth in colon-26-bearing mice. Taken together, these results suggest that HPH using a microfluidizer could be useful to prepare PEG-modified Exos encapsulating anti-cancer drugs via a one-step pharmaceutical process, and that the prepared functional Exos could be applied for the treatment of cancer in vivo.
Collapse
|
16
|
Blanco S, Martínez-Lara E, Siles E, Peinado MÁ. New Strategies for Stroke Therapy: Nanoencapsulated Neuroglobin. Pharmaceutics 2022; 14:pharmaceutics14081737. [PMID: 36015363 PMCID: PMC9412405 DOI: 10.3390/pharmaceutics14081737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023] Open
Abstract
Stroke is a global health and socio-economic problem. However, no efficient preventive and/or palliative treatments have yet been found. Neuroglobin (Ngb) is an endogen neuroprotective protein, but it only exerts its beneficial action against stroke after increasing its basal levels. Therefore, its systemic administration appears to be an efficient therapy applicable to stroke and other neurodegenerative pathologies. Unfortunately, Ngb cannot cross the blood-brain barrier (BBB), making its direct pharmacological use unfeasible. Thus, the association of Ngb with a drug delivery system (DDS), such as nanoparticles (NPs), appears to be a good strategy for overcoming this handicap. NPs are a type of DDS which efficiently transport Ngb and increase its bioavailability in the infarcted area. Hence, we previously built hyaluronate NPS linked to Ngb (Ngb-NPs) as a therapeutic tool against stroke. This nanoformulation induced an improvement of the cerebral infarct prognosis. However, this innovative therapy is still in development, and a more in-depth study focusing on its long-lasting neuroprotectant and neuroregenerative capabilities is needed. In short, this review aims to update the state-of-the-art of stroke therapies based on Ngb, paying special attention to the use of nanotechnological drug-delivering tools.
Collapse
|
17
|
Yoneda S, Fukuta T, Ozono M, Kogure K. Enhancement of cerebroprotective effects of lipid nanoparticles encapsulating FK506 on cerebral ischemia/reperfusion injury by particle size regulation. Biochem Biophys Res Commun 2022; 611:53-59. [PMID: 35477093 DOI: 10.1016/j.bbrc.2022.04.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/02/2022]
Abstract
Delivery of cerebroprotective agents using liposomes has been demonstrated to be useful for treating cerebral ischemia/reperfusion (I/R) injury. We previously reported that intravenous administration of liposomes with diameters of 100 nm showed higher accumulation in the I/R region compared with larger liposomes (>200 nm) by passage through the disintegrated blood-brain barrier, suggesting a size-dependence for liposome-mediated drug delivery. Based on these findings, we hypothesized that regulation of liposomal particle size (<100 nm) may enhance the therapeutic efficacy of encapsulated drugs on cerebral I/R injury. Herein, we prepared lipid nanoparticles (LNP) with particle sizes <100 nm by the microfluidics method and compared their therapeutic potential with LNP exhibiting sizes >100 nm in cerebral I/R model rats. Intravenously administered smaller LNP (ca. 60 nm) exhibited wider accumulation and diffusivity in the brain parenchyma of the I/R region compared with larger LNP (>100 nm). Importantly, treatment with LNP encapsulating the cerebroprotective agent FK506 (FK-LNP) with particle sizes <100 nm showed greater cerebroprotective effects than FK-LNP with sizes >100 nm, and also significantly ameliorated brain injury. These results suggest that particle size regulation of LNP to sizes <100 nm can enhance the therapeutic effect of encapsulated drugs for treatment of cerebral I/R injury, and that FK-LNP could be a promising cerebroprotective agent.
Collapse
Affiliation(s)
- Shintaro Yoneda
- Department of Pharmaceutical Health Chemistry, Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi 1, Tokushima, 770-8505, Japan
| | - Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama, 640-8156, Japan.
| | - Mizune Ozono
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima, 770-8505, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima, 770-8505, Japan
| |
Collapse
|