1
|
Dai M, Qian K, Ye Q, Yang J, Gan L, Jia Z, Pan Z, Cai Q, Jiang T, Ma C, Lin X. Specific Mode Electroacupuncture Stimulation Mediates the Delivery of NGF Across the Hippocampus Blood-Brain Barrier Through p65-VEGFA-TJs to Improve the Cognitive Function of MCAO/R Convalescent Rats. Mol Neurobiol 2025; 62:1451-1466. [PMID: 38995444 PMCID: PMC11772513 DOI: 10.1007/s12035-024-04337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
Cognitive impairment frequently presents as a prevalent consequence following stroke, imposing significant burdens on patients, families, and society. The objective of this study was to assess the effectiveness and underlying mechanism of nerve growth factor (NGF) in treating post-stroke cognitive dysfunction in rats with cerebral ischemia-reperfusion injury (MCAO/R) through delivery into the brain using specific mode electroacupuncture stimulation (SMES). From the 28th day after modeling, the rats were treated with NGF mediated by SMES, and the cognitive function of the rats was observed after treatment. Learning and memory ability were evaluated using behavioral tests. The impact of SMES on blood-brain barrier (BBB) permeability, the underlying mechanism of cognitive enhancement in rats with MCAO/R, including transmission electron microscopy, enzyme-linked immunosorbent assay, immunohistochemistry, immunofluorescence, and TUNEL staining. We reported that SMES demonstrates a safe and efficient ability to open the BBB during the cerebral ischemia repair phase, facilitating the delivery of NGF to the brain by the p65-VEGFA-TJs pathway.
Collapse
Affiliation(s)
- Mengyuan Dai
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
- Department of Rehabilitation, Lishui Central Hospital, Lishui, 323000, Zhejiang Province, China
| | - Kecheng Qian
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Qinyu Ye
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Jinding Yang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Lin Gan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Zhaoxing Jia
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Zixing Pan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Qian Cai
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Tianxiang Jiang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Congcong Ma
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China.
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China.
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Xihu District, Moganshan Road No. 219, Hangzhou, 310000, Zhejiang Province, China.
| | - Xianming Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China.
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China.
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Xihu District, Moganshan Road No. 219, Hangzhou, 310000, Zhejiang Province, China.
- Department of Rehabilitation, Zhejiang Rehabilitation Medical Center, No. 2828, Binsheng Road, Hangzhou, 310051, Zhejiang Province, China.
| |
Collapse
|
2
|
Chen CM, Huang CY, Lai CH, Chen YC, Hwang YT, Lin CY. Neuroprotection effects of kynurenic acid-loaded micelles for the Parkinson's disease models. J Liposome Res 2024; 34:593-604. [PMID: 38779944 DOI: 10.1080/08982104.2024.2346986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Anti-glutamatergic agents may have neuroprotective effects against excitotoxicity that is known to be involved in the pathogenesis of Parkinson's disease (PD). One of these agents is kynurenic acid (KYNA), a tryptophan metabolite, which is an endogenous N-methyl-D-aspartic acid (NMDA) receptor antagonist. However, its pharmacological properties of poor water solubility and limited blood-brain barrier (BBB) permeability rules out its systemic administration in disorders affecting the central nervous system. Our aim in the present study was to investigate the neuroprotective effects of KYNA-loaded micelles (KYNA-MICs) against PD in vitro and in vivo. Lipid-based micelles (MICs) in conjunction with KYNA drug delivery have the potential to enhance the penetration of therapeutic drugs into a diseased brain without BBB obstacles. KYNA-MICs were characterized by particle size (105.8 ± 12.1 nm), loading efficiency (78.3 ± 4.23%), and in vitro drug release (approximately 30% at 24 h). The in vitro experiments showed that KYNA-MICs effectively reduced 2-fold protein aggregation. The in vivo studies revealed that KYNA was successfully delivered by 5-fold increase in neurotoxin-induced PD brains. The results showed significant enhancement of KYNA delivery into brain. We also found that the KYNA-MICs exhibited several therapeutic effects. The KYNA-MICs reduced protein aggregation of an in vitro PD model, ameliorated motor functions, and prevented loss of the striatal neurons in a PD animal model. The beneficial effects of KYNA-MICs are probably explained by the anti-excitotoxic activity of the treatment's complex. As the KYNA-MICs did not induce any appreciable side-effects at the protective dose applied to a chronic PD mouse model, our results demonstrate that KYNA provides neuroprotection and attenuates PD pathology.
Collapse
Affiliation(s)
- Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Yun Huang
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Hui Lai
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chieh Chen
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ting Hwang
- Department of Statistics, National Taipei University, Taipei, Taiwan
| | - Chung-Yin Lin
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Statistics, National Taipei University, Taipei, Taiwan
| |
Collapse
|
3
|
Schwinghamer K, Line S, Tesar DB, Miller DW, Sreedhara A, Siahaan TJ. Selective Uptake of Macromolecules to the Brain in Microfluidics and Animal Models Using the HAVN1 Peptide as a Blood-Brain Barrier Modulator. Mol Pharm 2024; 21:1639-1652. [PMID: 38395041 PMCID: PMC10984760 DOI: 10.1021/acs.molpharmaceut.3c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Monoclonal antibodies (mAbs) possess favorable pharmacokinetic properties, high binding specificity and affinity, and minimal off-target effects, making them promising therapeutic agents for central nervous system (CNS) disorders. However, their development as effective therapeutic and diagnostic agents for brain disorders is hindered by their limited ability to efficiently penetrate the blood-brain barrier (BBB). Therefore, it is crucial to develop efficient delivery methods that enhance the penetration of antibodies into the brain. Previous studies have demonstrated the potential of cadherin-derived peptides (i.e., ADTC5, HAVN1 peptides) as BBB modulators (BBBMs) to increase paracellular porosities for penetration of molecules across the BBB. Here, we test the effectiveness of the leading BBBM peptide, HAVN1 (Cyclo(1,6)SHAVSS), in enhancing the permeation of various monoclonal antibodies through the BBB using both in vitro and in vivo systems. In vitro, HAVN1 has been shown to increase the permeability of fluorescently labeled macromolecules, such as a 70 kDa dextran, 50 kDa Fab1, and 150 kDa mAb1, by 4- to 9-fold in a three-dimensional blood-brain barrier (3D-BBB) microfluidics model using a human BBB endothelial cell line (i.e., hCMEC/D3). HAVN1 was selective in modulating the BBB endothelial cell, compared to the pulmonary vascular endothelial (PVE) cell barrier. Co-administration of HAVN1 significantly improved brain depositions of mAb1, mAb2, and Fab1 in C57BL/6 mice after 15 min in the systemic circulation. Furthermore, HAVN1 still significantly enhanced brain deposition of mAb2 when it was administered 24 h after the administration of the mAb. Lastly, we observed that multiple doses of HAVN1 may have a cumulative effect on the brain deposition of mAb2 within a 24-h period. These findings offer promising insights into optimizing HAVN1 and mAb dosing regimens to control or modulate mAb brain deposition for achieving desired mAb dose in the brain to provide its therapeutic effects.
Collapse
Affiliation(s)
- Kelly Schwinghamer
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave., Lawrence, KS 66047, USA
| | - Stacey Line
- Department of Pharmacology and Therapeutics, University of Manitoba, 753 McDermot Avenue Winnipeg, MB, R3E 0T6, Canada
| | - Devin B. Tesar
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donald W. Miller
- Department of Pharmacology and Therapeutics, University of Manitoba, 753 McDermot Avenue Winnipeg, MB, R3E 0T6, Canada
| | - Alavattam Sreedhara
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave., Lawrence, KS 66047, USA
| |
Collapse
|
4
|
Muksuris K, Scarisbrick DM, Mahoney JJ, Cherkasova MV. Noninvasive Neuromodulation in Parkinson's Disease: Insights from Animal Models. J Clin Med 2023; 12:5448. [PMID: 37685514 PMCID: PMC10487610 DOI: 10.3390/jcm12175448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The mainstay treatments for Parkinson's Disease (PD) have been limited to pharmacotherapy and deep brain stimulation. While these interventions are helpful, a new wave of research is investigating noninvasive neuromodulation methods as potential treatments. Some promising avenues have included transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), electroconvulsive therapy (ECT), and focused ultrasound (FUS). While these methods are being tested in PD patients, investigations in animal models of PD have sought to elucidate their therapeutic mechanisms. In this rapid review, we assess the available animal literature on these noninvasive techniques and discuss the possible mechanisms mediating their therapeutic effects based on these findings.
Collapse
Affiliation(s)
- Katherine Muksuris
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
| | - David M. Scarisbrick
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James J. Mahoney
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Mariya V. Cherkasova
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
5
|
Wang T, Lei H, Li X, Yang N, Ma C, Li G, Gao X, Ge J, Liu Z, Cheng L, Chen G. Magnetic Targeting Nanocarriers Combined with Focusing Ultrasound for Enhanced Intracerebral Hemorrhage Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206982. [PMID: 36703527 DOI: 10.1002/smll.202206982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Intracerebral hemorrhage (ICH) remains a significant cause of morbidity and mortality around the world, and surgery is still the most direct and effective way to remove ICH. However, the potential risks brought by surgery, such as normal brain tissue damage, post-operative infection, and difficulty in removing deep hematoma, are still the main problems in the surgical treatment of ICH. Activation of the peroxisome proliferator-activated receptor gamma (PPARγ) is reported to show a good therapeutic effect in hematoma clearance. Herein, a magnetic targeting nanocarrier loaded with a PPARγ agonist (15d-PGJ2-MNPs) is synthesized, which could be magnetically targeted and enriched in the area of the hematoma after intravenous injection. Subsequent application of focusing ultrasound (FUS) could enhance drug diffusion, which activates the PPARγ receptors on macrophages around the hematoma for better hematoma clearance. The 15d-PGJ2-MNP treatment alleviates brain injury, accelerates hematoma clearance, attenuates neuroinflammation, reduces brain edema and significantly improves the deficits in sensory and motor function and spatial learning ability in the ICH mouse model. This work proposes an effective magnetic targeting plus FUS method to treat ICH, highlighting its great potential in the treatment of hemorrhagic stroke.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Cheng Ma
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Guangqiang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xiang Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jun Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| |
Collapse
|
6
|
Analysis of Intestinal Metabolites in SR-B1 Knockout Mice via Ultra-Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020610. [PMID: 36677669 PMCID: PMC9866485 DOI: 10.3390/molecules28020610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Scavenger receptor class B type 1 (SR-B1), a multiligand membrane receptor, is expressed in a gradient along the gastrocolic axis. SR-B1 deficiency enhances lymphocyte proliferation and elevates inflammatory cytokine production in macrophages. However, whether SR-B1 affects intestinal metabolites is unclear. In this study, we detected metabolite changes in the intestinal tissue of SR-B1-/- mice, including amino acids and neurotransmitters, by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) and HPLC. We found that SR-B1-/- mice exhibited changes in intestinal lipid metabolites and metabolic pathways, including the glycerophospholipid, sphingolipid, linoleic acid, taurine, and hypotaurine metabolic pathways. SR-B1 deficiency influenced the contents of amino acids and neurotransmitters in all parts of the intestine; the contents of leucine (LEU), phenylalanine (PHE), tryptophan (TRP), and tyrosine (TYR) were affected in all parts of the intestine; and the contents of 3,4-dihydroxyphenylacetic acid (DOPAC) and dopamine (DA) were significantly decreased in both the colon and rectum. In summary, SR-B1 deficiency regulated intestinal lipids, amino acids, and neurotransmitter metabolism in mice.
Collapse
|