1
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2024:1-22. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Wang X, An J, Cao T, Guo M, Han F. Application of Biosurfactants in Medical Sciences. Molecules 2024; 29:2606. [PMID: 38893481 PMCID: PMC11173561 DOI: 10.3390/molecules29112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Biosurfactants derived from microorganisms have attracted widespread attention in scientific research due to their unique surface activity, low toxicity, biodegradability, antibacterial properties, and stability under extreme conditions. Biosurfactants are widely used in many fields, such as medicine, agriculture, and environmental protection. Therefore, this review aims to comprehensively review and analyze the various applications of biosurfactants in the medical field. The central roles of biosurfactants in crucial medical areas are explored, like drug delivery, induction of tumor cell differentiation or death, treating bacterial and viral effects, healing wounds, and immune regulation. Moreover, a new outlook is introduced on optimizing the capabilities of biosurfactants through modification and gene recombination for better use in medicine. The current research challenges and future research directions are described, aiming to provide valuable insights for continuous study of biosurfactants in medicine.
Collapse
Affiliation(s)
| | | | | | | | - Fu Han
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.W.); (J.A.); (T.C.); (M.G.)
| |
Collapse
|
3
|
Ceresa C, Fracchia L, Sansotera AC, De Rienzo MAD, Banat IM. Harnessing the Potential of Biosurfactants for Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:2156. [PMID: 37631370 PMCID: PMC10457971 DOI: 10.3390/pharmaceutics15082156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biosurfactants (BSs) are microbial compounds that have emerged as potential alternatives to chemical surfactants due to their multifunctional properties, sustainability and biodegradability. Owing to their amphipathic nature and distinctive structural arrangement, biosurfactants exhibit a range of physicochemical properties, including excellent surface activity, efficient critical micelle concentration, humectant properties, foaming and cleaning abilities and the capacity to form microemulsions. Furthermore, numerous biosurfactants display additional biological characteristics, such as antibacterial, antifungal and antiviral effects, and antioxidant, anticancer and immunomodulatory activities. Over the past two decades, numerous studies have explored their potential applications, including pharmaceuticals, cosmetics, antimicrobial and antibiofilm agents, wound healing, anticancer treatments, immune system modulators and drug/gene carriers. These applications are particularly important in addressing challenges such as antimicrobial resistance and biofilm formations in clinical, hygiene and therapeutic settings. They can also serve as coating agents for surfaces, enabling antiadhesive, suppression, or eradication strategies. Not least importantly, biosurfactants have shown compatibility with various drug formulations, including nanoparticles, liposomes, micro- and nanoemulsions and hydrogels, improving drug solubility, stability and bioavailability, and enabling a targeted and controlled drug release. These qualities make biosurfactants promising candidates for the development of next-generation antimicrobial, antibiofilm, anticancer, wound-healing, immunomodulating, drug or gene delivery agents, as well as adjuvants to other antibiotics. Analysing the most recent literature, this review aims to update the present understanding, highlight emerging trends, and identify promising directions and advancements in the utilization of biosurfactants within the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Andrea Chiara Sansotera
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | | | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
4
|
Jacobsen AC, Visentin S, Butnarasu C, Stein PC, di Cagno MP. Commercially Available Cell-Free Permeability Tests for Industrial Drug Development: Increased Sustainability through Reduction of In Vivo Studies. Pharmaceutics 2023; 15:pharmaceutics15020592. [PMID: 36839914 PMCID: PMC9964961 DOI: 10.3390/pharmaceutics15020592] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Replacing in vivo with in vitro studies can increase sustainability in the development of medicines. This principle has already been applied in the biowaiver approach based on the biopharmaceutical classification system, BCS. A biowaiver is a regulatory process in which a drug is approved based on evidence of in vitro equivalence, i.e., a dissolution test, rather than on in vivo bioequivalence. Currently biowaivers can only be granted for highly water-soluble drugs, i.e., BCS class I/III drugs. When evaluating poorly soluble drugs, i.e., BCS class II/IV drugs, in vitro dissolution testing has proved to be inadequate for predicting in vivo drug performance due to the lack of permeability interpretation. The aim of this review was to provide solid proofs that at least two commercially available cell-free in vitro assays, namely, the parallel artificial membrane permeability assay, PAMPA, and the PermeaPad® assay, PermeaPad, in different formats and set-ups, have the potential to reduce and replace in vivo testing to some extent, thus increasing sustainability in drug development. Based on the literature review presented here, we suggest that these assays should be implemented as alternatives to (1) more energy-intense in vitro methods, e.g., refining/replacing cell-based permeability assays, and (2) in vivo studies, e.g., reducing the number of pharmacokinetic studies conducted on animals and humans. For this to happen, a new and modern legislative framework for drug approval is required.
Collapse
Affiliation(s)
- Ann-Christin Jacobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy
| | - Paul C. Stein
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælands Vei 3, 0371 Oslo, Norway
- Correspondence:
| |
Collapse
|
5
|
Marcello E, Chiono V. Biomaterials-Enhanced Intranasal Delivery of Drugs as a Direct Route for Brain Targeting. Int J Mol Sci 2023; 24:ijms24043390. [PMID: 36834804 PMCID: PMC9964911 DOI: 10.3390/ijms24043390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Intranasal (IN) drug delivery is a non-invasive and effective route for the administration of drugs to the brain at pharmacologically relevant concentrations, bypassing the blood-brain barrier (BBB) and minimizing adverse side effects. IN drug delivery can be particularly promising for the treatment of neurodegenerative diseases. The drug delivery mechanism involves the initial drug penetration through the nasal epithelial barrier, followed by drug diffusion in the perivascular or perineural spaces along the olfactory or trigeminal nerves, and final extracellular diffusion throughout the brain. A part of the drug may be lost by drainage through the lymphatic system, while a part may even enter the systemic circulation and reach the brain by crossing the BBB. Alternatively, drugs can be directly transported to the brain by axons of the olfactory nerve. To improve the effectiveness of drug delivery to the brain by the IN route, various types of nanocarriers and hydrogels and their combinations have been proposed. This review paper analyzes the main biomaterials-based strategies to enhance IN drug delivery to the brain, outlining unsolved challenges and proposing ways to address them.
Collapse
Affiliation(s)
- Elena Marcello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research, Centro 3R, 56122 Pisa, Italy
- Institute for Chemical-Physical Processes, National Research Council (CNR-IPCF), 56124 Pisa, Italy
- Correspondence:
| |
Collapse
|
6
|
Validation and testing of a new artificial biomimetic barrier for estimation of transdermal drug absorption. Int J Pharm 2022; 628:122266. [DOI: 10.1016/j.ijpharm.2022.122266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/22/2022]
|
7
|
Zhao Y, Li Z, Zhao L, Wang J, Wang F, Zhang Q, Wang X, Sang Y, Zhan J, He J, Li N, Kang X, Chen J, Wang R. Two novel lactic acid bacteria, Limosilactobacillus fermentum MN-LF23 and Lactobacillus gasseri MN-LG80, inhibited Helicobacter pylori infection in C57BL/6 mice. Food Funct 2022; 13:11061-11069. [PMID: 36197065 DOI: 10.1039/d2fo02034c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Helicobacter pylori (H. pylori) is one of the most prevalent pathogens globally, and long-term infection causes various gastrointestinal diseases such as gastritis and even cancer. In the present study, we screened dozens of lactic acid bacteria for the efficacy to inhibit H. pylori growth in vitro, and tested the therapeutic effects of candidate strains in vivo. The results showed that Limosilactobacillus fermentum MN-LF23 (LF23) and Lactobacillus gasseri MN-LG80 (LG80) significantly reduced the abundance of Helicobacter by 90% and 83% in the infected mice, respectively, and decreased the levels of serum urease and H. pylori-specific IgG. Both bacterial strains tended to ameliorate H. pylori infection-induced gastric mucosa damage and lymphocyte infiltration, and reduced levels of serum inflammatory cytokines such as TNF-α, IL-1β, and IL-6. In addition, their culture supernatants also showed a therapeutic effect, as efficient as the bacterial cells. Furthermore, both strains significantly regulated gastric microbiota profile, and their supernatants restored the diversity of gastric microbiota. LF23 increased the abundance of Lactobacillus murinus and reduced the abundance of Desulfovibrio, whereas LG80 increased the abundance of Lactobacillus reuteri and reduced the abundance of Bilophila. Both LF23 and LG80 enriched beneficial commensals such as Faecalibaculum rodentium, and reduced detrimental bacteria such as H. pylori and Lachnoclostridium. In conclusion, we identified two novel lactic acid bacteria L. fermentum MN-LF23 and L. gasseri MN-LG80 that can remarkably inhibit H. pylori infection.
Collapse
Affiliation(s)
- Yuyang Zhao
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100083, China
| | - Zhipeng Li
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, 011500, Inner Mongolia, China.
- Shanghai Mengniu Biotechnology R&D Co., Ltd., 201210, Shanghai, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100083, China
| | - Jian Wang
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100083, China
| | - Fan Wang
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, 011500, Inner Mongolia, China.
- Shanghai Mengniu Biotechnology R&D Co., Ltd., 201210, Shanghai, China
| | - Qi Zhang
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100083, China
| | - Xiaoyu Wang
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100083, China
| | - Yue Sang
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Jing Zhan
- Department of Nutrition and Health, China Agricultural University, Beijing 100190, China.
| | - Jingjing He
- Department of Nutrition and Health, China Agricultural University, Beijing 100190, China.
| | - Ning Li
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, 011500, Inner Mongolia, China.
| | - Xiaohong Kang
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, 011500, Inner Mongolia, China.
- Shanghai Mengniu Biotechnology R&D Co., Ltd., 201210, Shanghai, China
| | - Jianguo Chen
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, 011500, Inner Mongolia, China.
- Shanghai Mengniu Biotechnology R&D Co., Ltd., 201210, Shanghai, China
| | - Ran Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100190, China.
| |
Collapse
|
8
|
Corazza E, di Cagno MP, Bauer-Brandl A, Abruzzo A, Cerchiara T, Bigucci F, Luppi B. Drug delivery to the brain: In situ gelling formulation enhances carbamazepine diffusion through nasal mucosa models with mucin. Eur J Pharm Sci 2022; 179:106294. [PMID: 36116696 DOI: 10.1016/j.ejps.2022.106294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
The objective of this work was to optimize a thermosensitive in situ gelling formulation to improve intranasal and nose-to-brain delivery of the antiepileptic drug carbamazepine (CBZ). A preliminary procedure of vehicles obtained just mixing different fractions of poloxamer 407 (P407) and poloxamer 188 (P188) revealed preparations with phase transition temperatures, times to gelation and pH values suitable for nasal delivery. Subsequently, the mucoadhesive properties of the most promising formulations were tuned by adding hydroxypropylmethylcellulose types of different viscosity grades, and the effect of the adhesive polymers was evaluated by testing in vitro time and strength of mucoadhesion on specimens of sheep nasal mucosa. The formulation that showed the greatest mucoadhesive potential in vitro, with a time and force of mucoadhesion equal to 1746,75 s and 3.66 × 10-4 N, respectively, was that composed of 22% P407, 5% P188 and 0.8% HPMC low-viscous and it was further investigated for its ability to increase drug solubility and to control the release of the drug. Lastly, the capability of the candidate vehicle to ensure drug permeation across the biomimetic membrane Permeapad®, an artificial phospholipid-based barrier with a stratified architecture, and the same barrier enriched with a mucin layer was verified. The final formulation was characterized by a pH value of 6.0, underwent gelation at 32.33°C in 37.85 s, thus showing all the features required by in situ gelling thermosensitive preparations designed for nasal delivery and, more notably, it conserved the ability to favor drug permeation in the presence of mucin. These findings suggest that the optimized gelling system could be a promising and easy to realize strategy to improve CBZ delivery to the brain exploiting both a direct and indirect pathway.
Collapse
Affiliation(s)
- Elisa Corazza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Sælands vei 3, Oslo 0371, Norway.
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Angela Abruzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, Bologna 40127, Italy
| |
Collapse
|
9
|
Abbot V, Paliwal D, Sharma A, Sharma P. A review on the physicochemical and biological applications of biosurfactants in biotechnology and pharmaceuticals. Heliyon 2022; 8:e10149. [PMID: 35991993 PMCID: PMC9389252 DOI: 10.1016/j.heliyon.2022.e10149] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/17/2022] [Accepted: 07/28/2022] [Indexed: 01/22/2023] Open
Abstract
Biosurfactants are the chemical compounds that are obtained from various micro-organisms and possess the ability to decrease the interfacial tension between two similar or different phases. The importance of biosurfactants in cosmetics, pharmaceuticals, biotechnology, agriculture, food and oil industries has made them an interesting choice in various physico-chemical and biological applications. With the aim of representing different properties of biosurfactants, this review article is focused on emphasizing their applications in various industries summarizing their importance in each field. Along with this, the production of recently developed chemically and biologically important biosurfactants has been outlined. The advantages of biosurfactants over the chemical surfactants have also been discussed with emphasis on the latest findings and research performed worldwide. Moreover, the chemical and physical properties of different biosurfactants have been presented and different characterization techniques have been discussed. Overall, the review article covers the latest developments in biosurfactants along with their physico-chemical properties and applications in different fields, especially in pharmaceuticals and biotechnology.
Collapse
Affiliation(s)
- Vikrant Abbot
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan (Himachal Pradesh) 173234, India
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Campus-2, Near Baddowal Cantt. Ferozpur Road, Ludhiana (Punjab) 142021, India
| | - Diwakar Paliwal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan (Himachal Pradesh) 173234, India
| | - Anuradha Sharma
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Campus-2, Near Baddowal Cantt. Ferozpur Road, Ludhiana (Punjab) 142021, India
| | - Poonam Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan (Himachal Pradesh) 173234, India
| |
Collapse
|