1
|
E U, T M, A V G, D P. A comprehensive survey of drug-target interaction analysis in allopathy and siddha medicine. Artif Intell Med 2024; 157:102986. [PMID: 39326289 DOI: 10.1016/j.artmed.2024.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Effective drug delivery is the cornerstone of modern healthcare, ensuring therapeutic compounds reach their intended targets efficiently. This paper explores the potential of personalized and holistic healthcare, driven by the synergy between traditional and allopathic medicine systems, with a specific focus on the vast reservoir of medicinal compounds found in plants rooted in the historical legacy of traditional medicine. Motivated by the desire to unlock the therapeutic potential of medicinal plants and bridge the gap between traditional and allopathic medicine, this survey delves into in-silico computational approaches for studying Drug-Target Interactions (DTI) within the contexts of allopathy and siddha medicine. The contributions of this survey are multifaceted: it offers a comprehensive overview of in-silico methods for DTI analysis in both systems, identifies common challenges in DTI studies, provides insights into future directions to advance DTI analysis, and includes a comparative analysis of DTI in allopathy and siddha medicine. The findings of this survey highlight the pivotal role of in-silico computational approaches in advancing drug research and development in both allopathy and siddha medicine, emphasizing the importance of integrating these methods to drive the future of personalized healthcare.
Collapse
Affiliation(s)
- Uma E
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India.
| | - Mala T
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| | - Geetha A V
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| | - Priyanka D
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| |
Collapse
|
2
|
Cheng X, Yang X, Guan Y, Feng Y. ERT-GFAN: A multimodal drug-target interaction prediction model based on molecular biology and knowledge-enhanced attention mechanism. Comput Biol Med 2024; 180:109012. [PMID: 39153394 DOI: 10.1016/j.compbiomed.2024.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
In drug discovery, precisely identifying drug-target interactions is crucial for finding new drugs and understanding drug mechanisms. Evolving drug/target heterogeneous data presents challenges in obtaining multimodal representation in drug-target prediction(DTI). To deal with this, we propose 'ERT-GFAN', a multimodal drug-target interaction prediction model inspired by molecular biology. Firstly, it integrates bio-inspired principles to obtain structure feature of drugs and targets using Extended Connectivity Fingerprints(ECFP). Simultaneously, the knowledge graph embedding model RotatE is employed to discover the interaction feature of drug-target pairs. Subsequently, Transformer is utilized to refine the contextual neighborhood features from the obtained structure feature and interaction features, and multi-modal high-dimensional fusion features of the three-modal information constructed. Finally, the final DTI prediction results are outputted by integrating the multimodal fusion features into a graphical high-dimensional fusion feature attention network (GFAN) using our innovative multimodal high-dimensional fusion feature attention. This multimodal approach offers a comprehensive understanding of drug-target interactions, addressing challenges in complex knowledge graphs. By combining structure feature, interaction feature, and contextual neighborhood features, 'ERT-GFAN' excels in predicting DTI. Empirical evaluations on three datasets demonstrate our method's superior performance, with AUC of 0.9739, 0.9862, and 0.9667, AUPR of 0.9598, 0.9789, and 0.9750, and Mean Reciprocal Rank(MRR) of 0.7386, 0.7035, and 0.7133. Ablation studies show over a 5% improvement in predictive performance compared to baseline unimodal and bimodal models. These results, along with detailed case studies, highlight the efficacy and robustness of our approach.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China.
| | - Xixin Yang
- College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China; School of Automation, Qingdao University, Qingdao, 266071, China.
| | - Yuanlin Guan
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, 266071, China; Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao University of Technology, Qingdao, 266071, China
| | - Yihan Feng
- College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
3
|
Abdelkader GA, Kim JD. Advances in Protein-Ligand Binding Affinity Prediction via Deep Learning: A Comprehensive Study of Datasets, Data Preprocessing Techniques, and Model Architectures. Curr Drug Targets 2024; 25:1041-1065. [PMID: 39318214 PMCID: PMC11774311 DOI: 10.2174/0113894501330963240905083020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Drug discovery is a complex and expensive procedure involving several timely and costly phases through which new potential pharmaceutical compounds must pass to get approved. One of these critical steps is the identification and optimization of lead compounds, which has been made more accessible by the introduction of computational methods, including deep learning (DL) techniques. Diverse DL model architectures have been put forward to learn the vast landscape of interaction between proteins and ligands and predict their affinity, helping in the identification of lead compounds. OBJECTIVE This survey fills a gap in previous research by comprehensively analyzing the most commonly used datasets and discussing their quality and limitations. It also offers a comprehensive classification of the most recent DL methods in the context of protein-ligand binding affinity prediction (BAP), providing a fresh perspective on this evolving field. METHODS We thoroughly examine commonly used datasets for BAP and their inherent characteristics. Our exploration extends to various preprocessing steps and DL techniques, including graph neural networks, convolutional neural networks, and transformers, which are found in the literature. We conducted extensive literature research to ensure that the most recent deep learning approaches for BAP were included by the time of writing this manuscript. RESULTS The systematic approach used for the present study highlighted inherent challenges to BAP via DL, such as data quality, model interpretability, and explainability, and proposed considerations for future research directions. We present valuable insights to accelerate the development of more effective and reliable DL models for BAP within the research community. CONCLUSION The present study can considerably enhance future research on predicting affinity between protein and ligand molecules, hence further improving the overall drug development process.
Collapse
Affiliation(s)
- Gelany Aly Abdelkader
- Department of Computer Science and Electronic Engineering, Sun Moon University, Asan 31460, Republic of Korea
| | - Jeong-Dong Kim
- Department of Computer Science and Electronic Engineering, Sun Moon University, Asan 31460, Republic of Korea
- Division of Computer Science and Engineering, Sun Moon University, Asan 31460, Republic of Korea
- Genome-based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea
| |
Collapse
|
4
|
Abdul Raheem AK, Dhannoon BN. Comprehensive Review on Drug-target Interaction Prediction - Latest Developments and Overview. Curr Drug Discov Technol 2024; 21:e010923220652. [PMID: 37680152 DOI: 10.2174/1570163820666230901160043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023]
Abstract
Drug-target interactions (DTIs) are an important part of the drug development process. When the drug (a chemical molecule) binds to a target (proteins or nucleic acids), it modulates the biological behavior/function of the target, returning it to its normal state. Predicting DTIs plays a vital role in the drug discovery (DD) process as it has the potential to enhance efficiency and reduce costs. However, DTI prediction poses significant challenges and expenses due to the time-consuming and costly nature of experimental assays. As a result, researchers have increased their efforts to identify the association between medications and targets in the hopes of speeding up drug development and shortening the time to market. This paper provides a detailed discussion of the initial stage in drug discovery, namely drug-target interactions. It focuses on exploring the application of machine learning methods within this step. Additionally, we aim to conduct a comprehensive review of relevant papers and databases utilized in this field. Drug target interaction prediction covers a wide range of applications: drug discovery, prediction of adverse effects and drug repositioning. The prediction of drugtarget interactions can be categorized into three main computational methods: docking simulation approaches, ligand-based methods, and machine-learning techniques.
Collapse
Affiliation(s)
- Ali K Abdul Raheem
- Software Department, College of Information Technology, University of Babylon, Hillah, Babil, Iraq
- University of Warith Al-Anbiyaa, Kerbala, Iraq
| | - Ban N Dhannoon
- Department of Computer Science, College of Science, Al-Nahrain University, Baghdad, Iraq
| |
Collapse
|
5
|
Jiang M, Shao Y, Zhang Y, Zhou W, Pang S. A deep learning method for drug-target affinity prediction based on sequence interaction information mining. PeerJ 2023; 11:e16625. [PMID: 38099302 PMCID: PMC10720480 DOI: 10.7717/peerj.16625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Background A critical aspect of in silico drug discovery involves the prediction of drug-target affinity (DTA). Conducting wet lab experiments to determine affinity is both expensive and time-consuming, making it necessary to find alternative approaches. In recent years, deep learning has emerged as a promising technique for DTA prediction, leveraging the substantial computational power of modern computers. Methods We proposed a novel sequence-based approach, named KC-DTA, for predicting drug-target affinity (DTA). In this approach, we converted the target sequence into two distinct matrices, while representing the molecule compound as a graph. The proposed method utilized k-mers analysis and Cartesian product calculation to capture the interactions and evolutionary information among various residues, enabling the creation of the two matrices for target sequence. For molecule, it was represented by constructing a molecular graph where atoms serve as nodes and chemical bonds serve as edges. Subsequently, the obtained target matrices and molecule graph were utilized as inputs for convolutional neural networks (CNNs) and graph neural networks (GNNs) to extract hidden features, which were further used for the prediction of binding affinity. Results In order to evaluate the effectiveness of the proposed method, we conducted several experiments and made a comprehensive comparison with the state-of-the-art approaches using multiple evaluation metrics. The results of our experiments demonstrated that the KC-DTA method achieves high performance in predicting drug-target affinity (DTA). The findings of this research underscore the significance of the KC-DTA method as a valuable tool in the field of in silico drug discovery, offering promising opportunities for accelerating the drug development process. All the data and code are available for access on https://github.com/syc2017/KCDTA.
Collapse
Affiliation(s)
- Mingjian Jiang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, Shandong, China
| | - Yunchang Shao
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, Shandong, China
| | - Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, Shandong, China
| | - Wei Zhou
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, Shandong, China
| | - Shunpeng Pang
- School of Computer Engineering, WeiFang University, Weifang, Shandong, China
| |
Collapse
|
6
|
Williams AH, Zhan CG. Staying Ahead of the Game: How SARS-CoV-2 has Accelerated the Application of Machine Learning in Pandemic Management. BioDrugs 2023; 37:649-674. [PMID: 37464099 DOI: 10.1007/s40259-023-00611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2023] [Indexed: 07/20/2023]
Abstract
In recent years, machine learning (ML) techniques have garnered considerable interest for their potential use in accelerating the rate of drug discovery. With the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the utilization of ML has become even more crucial in the search for effective antiviral medications. The pandemic has presented the scientific community with a unique challenge, and the rapid identification of potential treatments has become an urgent priority. Researchers have been able to accelerate the process of identifying drug candidates, repurposing existing drugs, and designing new compounds with desirable properties using machine learning in drug discovery. To train predictive models, ML techniques in drug discovery rely on the analysis of large datasets, including both experimental and clinical data. These models can be used to predict the biological activities, potential side effects, and interactions with specific target proteins of drug candidates. This strategy has proven to be an effective method for identifying potential coronavirus disease 2019 (COVID-19) and other disease treatments. This paper offers a thorough analysis of the various ML techniques implemented to combat COVID-19, including supervised and unsupervised learning, deep learning, and natural language processing. The paper discusses the impact of these techniques on pandemic drug development, including the identification of potential treatments, the understanding of the disease mechanism, and the creation of effective and safe therapeutics. The lessons learned can be applied to future outbreaks and drug discovery initiatives.
Collapse
Affiliation(s)
- Alexander H Williams
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
- GSK Upper Providence, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|