1
|
Aloj L, Mansi R, De Luca S, Accardo A, Tesauro D, Morelli G. Radiolabeled peptides and their expanding role in clinical imaging and targeted cancer therapy. J Pept Sci 2024; 30:e3607. [PMID: 38710638 DOI: 10.1002/psc.3607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
There is an expanding body of evidence showing that synthetic peptides in combination with radioactive isotopes can be utilized for medical purposes. This area is of particular interest in oncology where applications in diagnosis and therapy are at different stages of development. We review the contributions in this area by the group originally founded by Carlo Pedone in Naples many years ago. We highlight the work of this group in the context of other developments in this area, focusing on three biologically relevant receptor systems: somatostatin, gastrin-releasing peptide, and cholecystokinin-2/gastrin receptors. We focus on key milestones, state of the art, and challenges in this area of research as well as the current and future outlook for expanding clinical applications.
Collapse
Affiliation(s)
- Luigi Aloj
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Stefania De Luca
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Diego Tesauro
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| |
Collapse
|
2
|
Stangl S, Nguyen NT, Brosch-Lenz J, Šimeček J, Weber WA, Kossatz S, Notni J. Efficiency of succinylated gelatin and amino acid infusions for kidney uptake reduction of radiolabeled αvβ6-integrin targeting peptides: considerations on clinical safety profiles. Eur J Nucl Med Mol Imaging 2024; 51:3191-3201. [PMID: 38717591 PMCID: PMC11369040 DOI: 10.1007/s00259-024-06738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/26/2024] [Indexed: 09/03/2024]
Abstract
PURPOSE 68Ga-Trivehexin is an investigational PET radiopharmaceutical (NCT05799274) targeting αvβ6-integrin for PET imaging of carcinomas. 177Lu-D0301 is a structurally related therapeutic peptide tetramer. However, it showed considerable kidney uptake in rodents, impeding clinical applicability. We therefore evaluated the impact of different kidney protection strategies on the biodistribution of both agents in normal and tumor-bearing mice. METHODS Ex-vivo biodistribution of 68Ga-Trivehexin (90 min p.i.) and 177Lu-D0301 (90 min and 24 h p.i.) was determined in healthy C57BL/6N and H2009 (human lung adenocarcinoma) xenografted CB17-SCID mice without and with co-infusion of 100 µL of solutions containing 2.5% arginine + 2.5% lysine (Arg/Lys), 4% succinylated gelatin (gelofusine, gelo), or combinations thereof. Arg/Lys was injected either i.p. 30 min before and after the radiopharmaceutical, or i.v. 2 min before the radiopharmaceutical. Gelo was administered either i.v. 2 min prior activity, or pre-mixed and injected together with the radiopharmaceutical (n = 5 per group). C57BL/6N mice were furthermore imaged by PET (90 min p.i.) and SPECT (24 h p.i.). RESULTS Kidney uptake of 68Ga-Trivehexin in C57BL/6N mice was reduced by 15% (Arg/Lys i.p.), 25% (Arg/Lys i.v.), and 70% (gelo i.v.), 90 min p.i., relative to control. 177Lu-D0301 kidney uptake was reduced by 2% (Arg/Lys i.p.), 41% (Arg/Lys i.v.), 61% (gelo i.v.) and 66% (gelo + Arg/Lys i.v.) 24 h p.i., compared to control. Combination of Arg/Lys and gelo provided no substantial benefit. Gelo furthermore reduced kidney uptake of 177Lu-D0301 by 76% (90 min p.i.) and 85% (24 h p.i.) in H2009 bearing SCID mice. Since tumor uptake was not (90 min p.i.) or only slightly reduced (15%, 24 h p.i.), the tumor/kidney ratio was improved by factors of 3.3 (90 min p.i.) and 2.6 (24 h p.i.). Reduction of kidney uptake was demonstrated by SPECT, which also showed that the remaining activity was located in the cortex. CONCLUSIONS The kidney uptake of both investigated radiopharmaceuticals was more efficiently reduced by gelofusine (61-85%) than Arg/Lys (25-41%). Gelofusine appears particularly suitable for reducing renal uptake of αvβ6-integrin targeted 177Lu-labeled peptide multimers because its application led to approximately three times higher tumor-to-kidney ratios. Since the incidence of severe adverse events (anaphylaxis) with succinylated gelatin products (reportedly 0.0062-0.038%) is comparable to that of gadolinium-based MRI or iodinated CT contrast agents (0.008% and 0.04%, respectively), clinical use of gelofusine during radioligand therapy appears feasible if similar risk management strategies as for contrast agents are applied.
Collapse
Affiliation(s)
- Stefan Stangl
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Nghia Trong Nguyen
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Julia Brosch-Lenz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | | | - Wolfgang A Weber
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts Der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Munich, Germany.
| | - Johannes Notni
- TRIMT GmbH, Radeberg, Germany.
- Institute of Pathology, School of Medicine and Health, Technische Universität München, München, Germany.
| |
Collapse
|
3
|
Vettorato E, Verona M, Bellio G, Croci S, Filadi R, Bisio A, Spessot E, Andrighetto A, Maniglio D, Asti M, Marzaro G, Mastrotto F. Development and Validation of Novel Z-360-Based Macromolecules for the Active Targeting of CCK2-R. Mol Pharm 2024; 21:3848-3865. [PMID: 38959127 DOI: 10.1021/acs.molpharmaceut.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The cholecystokinin type 2 receptor (CCK2-R) represents an ideal target for cancer therapy since it is overexpressed in several tumors and is associated with poor prognosis. Nastorazepide (Z-360), a selective CCK2-R antagonist, has been widely investigated as a CCK2-R ligand for targeted therapy; however, its high hydrophobicity may represent a limit to cell selectivity and optimal in vivo biodistribution. Here, we present three new fluorescent Z-360 derivatives (IP-002G-Rho, IP-002L-Rho, and IP-002M-Rho) in which nastorazepide was linked, through spacers bearing different saccharides (glucose (G), lactose (L), and maltotriose (M)), to sulforhodamine B. A fourth compound (IP-002H-Rho) with no pendant sugar was also synthesized as a control. Through two-dimensional (2D) and three-dimensional (3D) in vitro studies, we evaluated the compound association with and selectivity for CCK2-R-overexpressing cells (A431-CCK2-R+) vs CCK2-R-underexpressing cells (A431 WT). 2D in vitro studies highlighted a progressive increase of IP-002x-Rho association with A431-CCK2-R+ cells according to the linker hydrophilicity, that is, maltotriose > lactose > glucose > hydrogen, with IP-002M-Rho showing a 2.4- and a 1.36-fold higher uptake than IP-002G-Rho and IP-002L-Rho, respectively. Unexpectedly, IP-002H-Rho showed a similar cell association to that of IP-002L-Rho but with no difference between the two tested cell lines. On the contrary, association with A431-CCK2-R+ cells as compared to the A431 WT was found to be 1.08-, 1.14-, and 1.37-fold higher for IP-002G-Rho, IP-002L-Rho, and IP-002M-Rho, respectively, proving IP-002M-Rho to be the best-performing compound, as also confirmed by competition studies. Trafficking studies on A431-CCK2-R+ cells incubated with IP-002M-Rho suggested the coexistence of receptor-mediated endocytosis and simple diffusion. On the contrary, a high and selective uptake of IP-002M-Rho by A431-CCK2-R+ cells only was observed on 3D scaffolds embedded with cells, underlining the importance of 3D models in in vitro preliminary evaluation.
Collapse
Affiliation(s)
- Elisa Vettorato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
- Legnaro National Laboratories, Italian Institute of Nuclear Physics (INFN), viale dell'Università, 2, 35020 Legnaro (Padova), Italy
| | - Marco Verona
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Greta Bellio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Stefania Croci
- Clinical Immunology, Allergy, and Advanced Biotechnologies Unit, AUSL-IRCCS of Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Eugenia Spessot
- Department of Industrial Engineering and BIOtech Research Center, University of Trento, via Delle Regole 101, 38123 Trento, Italy
| | - Alberto Andrighetto
- Legnaro National Laboratories, Italian Institute of Nuclear Physics (INFN), viale dell'Università, 2, 35020 Legnaro (Padova), Italy
| | - Devid Maniglio
- Department of Industrial Engineering and BIOtech Research Center, University of Trento, via Delle Regole 101, 38123 Trento, Italy
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS of Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
4
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
5
|
Nock BA, Kanellopoulos P, Joosten L, Mansi R, Maina T. Peptide Radioligands in Cancer Theranostics: Agonists and Antagonists. Pharmaceuticals (Basel) 2023; 16:ph16050674. [PMID: 37242457 DOI: 10.3390/ph16050674] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical success of radiolabeled somatostatin analogs in the diagnosis and therapy-"theranostics"-of tumors expressing the somatostatin subtype 2 receptor (SST2R) has paved the way for the development of a broader panel of peptide radioligands targeting different human tumors. This approach relies on the overexpression of other receptor-targets in different cancer types. In recent years, a shift in paradigm from internalizing agonists to antagonists has occurred. Thus, SST2R-antagonist radioligands were first shown to accumulate more efficiently in tumor lesions and clear faster from the background in animal models and patients. The switch to receptor antagonists was soon adopted in the field of radiolabeled bombesin (BBN). Unlike the stable cyclic octapeptides used in the case of somatostatin, BBN-like peptides are linear, fast to biodegradable and elicit adverse effects in the body. Thus, the advent of BBN-like antagonists provided an elegant way to obtain effective and safe radiotheranostics. Likewise, the pursuit of gastrin and exendin antagonist-based radioligands is advancing with exciting new outcomes on the horizon. In the present review, we discuss these developments with a focus on clinical results, commenting on challenges and opportunities for personalized treatment of cancer patients by means of state-of-the-art antagonist-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15310 Athens, Greece
| | | | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15310 Athens, Greece
| |
Collapse
|
6
|
[111In]In/[177Lu]Lu-AAZTA5-LM4 SST2R-Antagonists in Cancer Theranostics: From Preclinical Testing to First Patient Results. Pharmaceutics 2023; 15:pharmaceutics15030776. [PMID: 36986637 PMCID: PMC10053881 DOI: 10.3390/pharmaceutics15030776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Aiming to expand the application of the SST2R-antagonist LM4 (DPhe-c[DCys-4Pal-DAph(Cbm)-Lys-Thr-Cys]-DTyr-NH2) beyond [68Ga]Ga-DATA5m-LM4 PET/CT (DATA5m, (6-pentanoic acid)-6-(amino)methy-1,4-diazepinetriacetate), we now introduce AAZTA5-LM4 (AAZTA5, 1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-[pentanoic-acid]perhydro-1,4-diazepine), allowing for the convenient coordination of trivalent radiometals of clinical interest, such as In-111 (for SPECT/CT) or Lu-177 (for radionuclide therapy). After labeling, the preclinical profiles of [111In]In-AAZTA5-LM4 and [177Lu]Lu-AAZTA5-LM4 were compared in HEK293-SST2R cells and double HEK293-SST2R/wtHEK293 tumor-bearing mice using [111In]In-DOTA-LM3 and [177Lu]Lu-DOTA-LM3 as references. The biodistribution of [177Lu]Lu-AAZTA5-LM4 was additionally studied for the first time in a NET patient. Both [111In]In-AAZTA5-LM4 and [177Lu]Lu-AAZTA5-LM4 displayed high and selective targeting of the HEK293-SST2R tumors in mice and fast background clearance via the kidneys and the urinary system. This pattern was reproduced for [177Lu]Lu-AAZTA5-LM4 in the patient according to SPECT/CT results in a monitoring time span of 4–72 h pi. In view of the above, we may conclude that [177Lu]Lu-AAZTA5-LM4 shows promise as a therapeutic radiopharmaceutical candidate for SST2R-expressing human NETs, based on previous [68Ga]Ga-DATA5m-LM4 PET/CT, but further studies are needed to fully assess its clinical value. Furthermore, [111In]In-AAZTA5-LM4 SPECT/CT may represent a legitimate alternative diagnostic option in cases where PET/CT is not available.
Collapse
|