1
|
Muszalska-Kolos I, Dwiecki PM. Searching for Conjugates as New Structures for Antifungal Therapies. J Med Chem 2024; 67:4298-4321. [PMID: 38470824 DOI: 10.1021/acs.jmedchem.3c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The progressive increase in fungal infections and the decrease in the effectiveness of current therapy explain research on new drugs. The synthesis of compounds with proven antifungal activity, favorable physicochemical and pharmacokinetic properties affecting their pharmaceutical availability and bioavailability, and limiting or eliminating side effects has become the goal of many studies. The publication describes the directions of searching for new compounds with antifungal activity, focusing on conjugates. The described modifications include, among others, azoles or amphotericin B in combination with fatty acids, polysaccharides, proteins, and synthetic polymers. The benefits of these combinations in terms of activity, mechanism of action, and bioavailability were indicated. The possibilities of creating or using nanoparticles, "umbrella" conjugates, siderophores (iron-chelating compounds), and monoclonal antibodies were also presented. Taking into account the role of vaccinations in prevention, the scope of research related to developing a vaccine protecting against fungal infections was also indicated.
Collapse
Affiliation(s)
- Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Mariusz Dwiecki
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Pharmaceutical Company "Ziołolek" Sp. z o.o., Starolecka 189, 61-341 Poznan, Poland
| |
Collapse
|
2
|
Selvaraj SP, Chen JY. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. Eur J Med Chem 2023; 259:115680. [PMID: 37515922 DOI: 10.1016/j.ejmech.2023.115680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The growing prevalence of antimicrobial resistance (AMR) has brought with it a continual increase in the numbers of deaths from multidrug-resistant (MDR) infections. Since the current arsenal of antibiotics has become increasingly ineffective, there exists an urgent need for discovery and development of novel antimicrobials. Antimicrobial peptides (AMPs) are considered to be a promising class of molecules due to their broad-spectrum activities and low resistance rates compared with other types of antibiotics. Since AMPs also often play major roles in elevating the host immune response, the molecules may also be called "host defense peptides." Despite the great promise of AMPs, the majority remain unsuitable for clinical use due to issues of structural instability, degradation by proteases, and/or toxicity to host cells. Moreover, AMP activities in vivo can be influenced by many factors, such as interaction with blood and serum biomolecules, physiological salt concentrations or different pH values. To overcome these limitations, structural modifications can be made to the AMP. Among several modifications, physical and chemical conjugation of AMP to other biomolecules is widely considered an effective strategy. In this review, we discuss structural modification strategies related to conjugation of AMPs and their possible effects on mode of action. The conjugation of fatty acids, glycans, antibiotics, photosensitizers, polymers, nucleic acids, nanoparticles, and immobilization to biomaterials are highlighted.
Collapse
Affiliation(s)
- Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan, 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
3
|
Gong L, Zhao H, Liu Y, Wu H, Liu C, Chang S, Chen L, Jin M, Wang Q, Gao Z, Huang W. Research advances in peptide‒drug conjugates. Acta Pharm Sin B 2023; 13:3659-3677. [PMID: 37719380 PMCID: PMC10501876 DOI: 10.1016/j.apsb.2023.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Peptide‒drug conjugates (PDCs) are drug delivery systems consisting of a drug covalently coupled to a multifunctional peptide via a cleavable linker. As an emerging prodrug strategy, PDCs not only preserve the function and bioactivity of the peptides but also release the drugs responsively with the cleavable property of the linkers. Given the ability to significantly improve the circulation stability and targeting of drugs in vivo and reduce the toxic side effects of drugs, PDCs have already been extensively applied in drug delivery. Herein, we review the types and mechanisms of peptides, linkers and drugs used to construct PDCs, and summarize the clinical applications and challenges of PDC drugs.
Collapse
Affiliation(s)
- Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Heming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- Department of Pharmacy, Yanbian University, Yanji 133000, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuangyan Chang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Suellen Ferro de Oliveira C, Kekhasharú Tavaria F. The impact of bioactive textiles on human skin microbiota. Eur J Pharm Biopharm 2023:S0939-6411(23)00118-2. [PMID: 37182552 DOI: 10.1016/j.ejpb.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
In order to support the elevated market demand for the development of textiles with specific benefits for a healthy and safe lifestyle, several bioactive textiles with defined properties, including antimicrobial, antioxidant, anti-inflammatory, anti-odor, and anti-repellent, anti-ultraviolet (UV) radiation, have been proposed. Antimicrobial textiles, particularly, have received special interest considering the search for smart, protective textiles that also impact health and well-being. Although the incorporation of antimicrobials into textile material has been well succeeded, the addition of such components in textile clothing can influence the balance of the skin microbiota of the wearer. While most antimicrobial textiles have demonstrated good biocompatibility and antimicrobial performance against bacteria, fungi, and viruses, some problems such as textile biodegradation, odor, and dissemination of unwanted microorganisms might arise. However, little is known about the impact of such antimicrobial textile-products on human skin microbiota. To address this issue, the present review, for the first time, gives an overview about the main effects of antimicrobial textiles, i.e., antibacterial, antifungal, and antiviral, on skin microbiota while driving future investigation to elucidate their putative clinical relevance and possible applications according to their impact on skin microbiota. This knowledge may open doors for the development of more microbiota friendly textiles or antimicrobial textile-products able to target specific populations of the skin microbiota aiming to alleviate skin disorders, malodor, and allergies by avoiding the growth and spread of pathogenic microorganisms.
Collapse
Affiliation(s)
- Cláudia Suellen Ferro de Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Freni Kekhasharú Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
5
|
Wu Z, Wu QF, Yuan WL, Chen YH, Hu D, Deng DY, Zhang LL, Niu XM. Arthrocolins Synergizing with Fluconazole Inhibit Fluconazole-Resistant Candida albicans by Increasing Riboflavin Metabolism and Causing Mitochondrial Dysfunction and Autophagy. Microbiol Spectr 2023; 11:e0405122. [PMID: 36847492 PMCID: PMC10101122 DOI: 10.1128/spectrum.04051-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Our previous study reported that seminaturally occurring arthrocolins A to C with unprecedented carbon skeletons could restore the antifungal activity of fluconazole against fluconazole-resistant Candida albicans. Here, we showed that arthrocolins synergized with fluconazole, reducing the fluconazole minimum and dramatically augmenting the survivals of 293T human cells and nematode Caenorhabditis elegans infected with fluconazole-resistant C. albicans. Mechanistically, fluconazole can induce fungal membrane permeability to arthrocolins, leading to the intracellular arthrocolins that were critical to the antifungal activity of the combination therapy by inducing abnormal cell membranes and mitochondrial dysfunctions in the fungus. Transcriptomics and reverse transcription-quantitative PCR (qRT-PCR) analysis indicated that the intracellular arthrocolins induced the strongest upregulated genes that were involved in membrane transports while the downregulated genes were responsible for fungal pathogenesis. Moreover, riboflavin metabolism and proteasomes were the most upregulated pathways, which were accompanied by inhibition of protein biosynthesis and increased levels of reactive oxygen species (ROS), lipids, and autophagy. Our results suggested that arthrocolins should be a novel class of synergistic antifungal compounds by inducing mitochondrial dysfunctions in combination with fluconazole and provided a new perspective for the design of new bioactive antifungal compounds with potential pharmacological properties. IMPORTANCE The prevalence of antifungal-resistant Candida albicans, which is a common human fungal pathogen causing life-threatening systemic infections, has become a challenge in the treatment of fungal infections. Arthrocolins are a new type of xanthene obtained from Escherichia coli fed with a key fungal precursor toluquinol. Different from those artificially synthesized xanthenes used as important medications, arthrocolins can synergize with fluconazole against fluconazole-resistant Candida albicans. Fluconazole can induce the fungal permeability of arthrocolins into fungal cells, and then the intracellular arthrocolins exerted detrimental effects on the fungus by inducing fungal mitochondrial dysfunctions, leading to dramatically reduced fungal pathogenicity. Importantly, the combination of arthrocolins and fluconazole are effective against C. albicans in two models, including human cell line 293T and nematode Caenorhabditis elegans. Arthrocolins should be a novel class of antifungal compounds with potential pharmacological properties.
Collapse
Affiliation(s)
- Zhuang Wu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People’s Republic of China
| | - Qun-Fu Wu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People’s Republic of China
| | - Wen-Li Yuan
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University, The second hospital of Yunnan Province, Kunming, Yunnan Province, People’s Republic of China
| | - Yong-Hong Chen
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People’s Republic of China
| | - Di Hu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People’s Republic of China
| | - De-Yao Deng
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University, The second hospital of Yunnan Province, Kunming, Yunnan Province, People’s Republic of China
| | - Long-Long Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People’s Republic of China
| | - Xue-Mei Niu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People’s Republic of China
| |
Collapse
|