1
|
Titova SA, Kruglova MP, Stupin VA, Manturova NE, Silina EV. Potential Applications of Rare Earth Metal Nanoparticles in Biomedicine. Pharmaceuticals (Basel) 2025; 18:154. [PMID: 40005968 PMCID: PMC11858778 DOI: 10.3390/ph18020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, the world scientific community has shown increasing interest in rare earth metals in general and their nanoparticles in particular. Medicine and pharmaceuticals are no exception in this matter. In this review, we have considered the main opportunities and potential applications of rare earth metal (gadolinium, europium, ytterbium, holmium, lutetium, dysprosium, erbium, terbium, thulium, scandium, yttrium, lanthanum, europium, neodymium, promethium, samarium, praseodymium, cerium) nanoparticles in biomedicine, with data ranging from single reports of effects found in vitro to numerous independent in vivo studies, as well as a number of challenges to their potential for wider application. The main areas of application of rare earth metals, including in the future, are diagnosis and treatment of malignant neoplasms, therapy of infections, as well as the use of antioxidant and regenerative properties of a number of nanoparticles. These applications are determined both by the properties of rare earth metal nanoparticles themselves and the need to search for new approaches to solve a number of urgent biomedical and public health problems. Oxide forms of lanthanides are most often used in biomedicine due to their greatest biocompatibility and nanoscale size, providing penetration through biological membranes. However, the existing contradictory or insufficient data on acute and chronic toxicity of lanthanides still make their widespread use difficult. There are various modification methods (addition of excipients, creation of nanocomposites, and changing the morphology of particles) that can reduce these effects. At the same time, despite the use of some representatives of lanthanides in clinical practice, further studies to establish the full range of pharmacological and toxic effects, as well as the search for approaches to modify nanoparticles remain relevant.
Collapse
Affiliation(s)
- Svetlana A. Titova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| | - Maria P. Kruglova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.A.S.); (N.E.M.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (V.A.S.); (N.E.M.)
| | - Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.A.T.); (E.V.S.)
| |
Collapse
|
2
|
Salvanou EA, Apostolopoulou A, Xanthopoulos S, Koelewijn S, van Overeem P, Laurent G, Bazzi R, Denat F, Roux S, Bouziotis P. 161Terbium-Labeled Gold Nanoparticles as Nanoscale Brachytherapy Agents Against Breast Cancer. MATERIALS (BASEL, SWITZERLAND) 2025; 18:248. [PMID: 39859720 PMCID: PMC11766487 DOI: 10.3390/ma18020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025]
Abstract
Due to their intriguing emission profile, Terbium-161 (161Tb) radiopharmaceuticals seem to bring significant advancement in theranostic applications to cancer treatment. The combination of 161Tb with nanoscale brachytherapy as an approach for cancer treatment is particularly advantageous and promising. Herein, we propose the application of a hybrid nanosystem comprising gold decorated (Au@TADOTAGA) iron oxide nanoflowers as a form of injectable nanobrachytherapy for the local treatment of breast cancer. More specifically, Au@TADOTAGA and NFAu@TADOTAGA NPs were efficiently radiolabeled with 161Tb, and their in vitro stability was assessed up to 21 d post-radiolabeling. Furthermore, their cytotoxic profile against 4T1 breast cancer cells was evaluated, and their ex vivo biodistribution characteristics were revealed after intratumoral injection in the same animal model. The enhanced retention at the tumor site urged us to evaluate the therapeutic effect of the [161Tb]Tb-NFAu@TADOTAGA nanosystem after intratumoral administration to 4T1-tumor-bearing mice, over a period of 24 days. Three different therapeutic protocols were performed in order to identify which therapeutic approach would offer the optimum results and identify the proposed nanosystem as a promising nanoscale brachytherapy agent.
Collapse
Affiliation(s)
- Evangelia-Alexandra Salvanou
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou and 27 Neapoleos Street, 15341 Athens, Greece; (A.A.); (S.X.); (P.B.)
| | - Adamantia Apostolopoulou
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou and 27 Neapoleos Street, 15341 Athens, Greece; (A.A.); (S.X.); (P.B.)
| | - Stavros Xanthopoulos
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou and 27 Neapoleos Street, 15341 Athens, Greece; (A.A.); (S.X.); (P.B.)
| | - Stuart Koelewijn
- Terthera b.v., Minervum 7070, 4817 ZK Breda, The Netherlands; (S.K.); (P.v.O.)
| | | | - Gautier Laurent
- Laboratoire Chrono-Environnement, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (G.L.); (R.B.); (S.R.)
| | - Rana Bazzi
- Laboratoire Chrono-Environnement, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (G.L.); (R.B.); (S.R.)
| | - Franck Denat
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, F-21078 Dijon, France;
| | - Stéphane Roux
- Laboratoire Chrono-Environnement, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (G.L.); (R.B.); (S.R.)
| | - Penelope Bouziotis
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou and 27 Neapoleos Street, 15341 Athens, Greece; (A.A.); (S.X.); (P.B.)
| |
Collapse
|
3
|
Abbasi S, Khademi S, Montazerabadi A, Sahebkar A. FAP-Targeted Nanoparticle-based Imaging in Cancer: A Systematic Review. J Biomed Phys Eng 2024; 14:323-334. [PMID: 39175559 PMCID: PMC11336055 DOI: 10.31661/jbpe.v0i0.2404-1754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 08/24/2024]
Abstract
Background Fibroblast Activation Protein (FAP)-targeted nanoparticles (NPs) are designed to accumulate in cancerous stroma. These NPs hold promise for imaging applications in cancer therapy. Objective This systematic review aimed to comprehensively explore the use of FAP-targeting NPs for cancer diagnosis through different imaging modalities. Material and Methods This systematic review followed the framework proposed by O'Malley and Arksey. Peer-reviewed studies were searched in the Scopus, Science Direct, PubMed, and Google Scholar databases. Eligible studies were selected, and data were extracted to investigate the FAP-targeting NPs in imaging. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was also utilized to present the results. Results Five studies met the specified inclusion criteria and were finally selected for analysis. The extracted data was classified into two categories: general and specific data. The general group indicated that most studies have been conducted in Mexico and have increased since 2022, and the specific group showed that colorectal cancer and Nude mice have received the most research attention. Furthermore, FAP-targeted NPs have demonstrated superior diagnostic imaging capabilities, even compared to specific methods for each cancer type. Also, they have been safe, with no toxicity. Conclusion FAP-targeted NPs using different ligands, such as Fibroblast Activation Protein Inhibitor (FAPI), can accurately detect tumors and metastases, and outperform specific cancer peptides like PSMA in cancer diagnosis. They are also non-toxic and do not cause radiation damage to tissues. Therefore, FAP-targeted NPs have the potential to serve as a viable alternative to FAP-targeted radionuclides for cancer diagnosis.
Collapse
Affiliation(s)
- Samaneh Abbasi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Montazerabadi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Reilly RM, Georgiou CJ, Brown MK, Cai Z. Radiation nanomedicines for cancer treatment: a scientific journey and view of the landscape. EJNMMI Radiopharm Chem 2024; 9:37. [PMID: 38703297 PMCID: PMC11069497 DOI: 10.1186/s41181-024-00266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Radiation nanomedicines are nanoparticles labeled with radionuclides that emit α- or β-particles or Auger electrons for cancer treatment. We describe here our 15 years scientific journey studying locally-administered radiation nanomedicines for cancer treatment. We further present a view of the radiation nanomedicine landscape by reviewing research reported by other groups. MAIN BODY Gold nanoparticles were studied initially for radiosensitization of breast cancer to X-radiation therapy. These nanoparticles were labeled with 111In to assess their biodistribution after intratumoural vs. intravenous injection. Intravenous injection was limited by high liver and spleen uptake and low tumour uptake, while intratumoural injection provided high tumour uptake but low normal tissue uptake. Further, [111In]In-labeled gold nanoparticles modified with trastuzumab and injected iintratumourally exhibited strong tumour growth inhibition in mice with subcutaneous HER2-positive human breast cancer xenografts. In subsequent studies, strong tumour growth inhibition in mice was achieved without normal tissue toxicity in mice with human breast cancer xenografts injected intratumourally with gold nanoparticles labeled with β-particle emitting 177Lu and modified with panitumumab or trastuzumab to specifically bind EGFR or HER2, respectively. A nanoparticle depot (nanodepot) was designed to incorporate and deliver radiolabeled gold nanoparticles to tumours using brachytherapy needle insertion techniques. Treatment of mice with s.c. 4T1 murine mammary carcinoma tumours with a nanodepot incorporating [90Y]Y-labeled gold nanoparticles inserted into one tumour arrested tumour growth and caused an abscopal growth-inhibitory effect on a distant second tumour. Convection-enhanced delivery of [177Lu]Lu-AuNPs to orthotopic human glioblastoma multiforme (GBM) tumours in mice arrested tumour growth without normal tissue toxicity. Other groups have explored radiation nanomedicines for cancer treatment in preclinical animal tumour xenograft models using gold nanoparticles, liposomes, block copolymer micelles, dendrimers, carbon nanotubes, cellulose nanocrystals or iron oxide nanoparticles. These nanoparticles were labeled with radionuclides emitting Auger electrons (111In, 99mTc, 125I, 103Pd, 193mPt, 195mPt), β-particles (177Lu, 186Re, 188Re, 90Y, 198Au, 131I) or α-particles (225Ac, 213Bi, 212Pb, 211At, 223Ra). These studies employed intravenous or intratumoural injection or convection enhanced delivery. Local administration of these radiation nanomedicines was most effective and minimized normal tissue toxicity. CONCLUSIONS Radiation nanomedicines have shown great promise for treating cancer in preclinical studies. Local intratumoural administration avoids sequestration by the liver and spleen and is most effective for treating tumours, while minimizing normal tissue toxicity.
Collapse
Affiliation(s)
- Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| | | | - Madeline K Brown
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Trujillo-Benítez D, Luna-Gutiérrez M, Aguirre-De Paz JG, Cruz-Nova P, Bravo-Villegas G, Vargas-Ahumada JE, Vallejo-Armenta P, Morales-Avila E, Jiménez-Mancilla N, Oros-Pantoja R, Santos-Cuevas C, Azorín-Vega E, Ocampo-García B, Ferro-Flores G. 68Ga-DOTA-D-Alanine-BoroPro Radiotracer for Imaging of the Fibroblast Activation Protein in Malignant and Non-Malignant Diseases. Pharmaceutics 2024; 16:532. [PMID: 38675193 PMCID: PMC11054143 DOI: 10.3390/pharmaceutics16040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 04/28/2024] Open
Abstract
Recently, we reported a new fibroblast activation protein (FAP) inhibitor radiopharmaceutical based on the 99mTc-((R)-1-((6-hydrazinylnicotinoyl)-D-alanyl) pyrrolidin-2-yl) boronic acid (99mTc-HYNIC-D-Alanine-BoroPro)(99mTc-HYNIC-iFAP) structure for tumor microenvironment SPECT imaging. This research aimed to synthesize 68Ga-[2,2',2″,2‴-(2-(4-(2-(5-(((S)-1-((S)-2-boronopyrrolidin-1-yl)-1-oxopropan-2-yl)carbamoyl)pyridin-2-yl)hydrazine-1-carbothioamido)benzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid] (68Ga-DOTA-D-Alanine-BoroPro)(68Ga-iFAP) as a novel radiotracer for PET imaging and evaluate its usefulness for FAP expression in malignant and non-malignant tissues. The coupling of p-SCN-benzene DOTA with HYNIC-iFAP was used for the chemical synthesis and further labeling with 68Ga. Radiochemical purity was verified by radio-HPLC. The specificity of 68Ga-iFAP was evaluated in HCT116 cells, in which FAP expression was verified by immunofluorescence and Western blot. Biodistribution and biokinetic studies were performed in murine models. 68Ga-iFAP uptake at the myocardial level was assessed in mice with induced infarction. First-in-human images of 68Ga-iFAP in healthy subjects and patients with myocardial infarction, glioblastoma, prostate cancer, and breast cancer were also obtained. DOTA-D-Alanine BoroPro was prepared with a chemical purity of 98% and was characterized by UPLC mass spectroscopy, FT-IR, and UV-vis. The 68Ga-iFAP was obtained with a radiochemical purity of >95%. In vitro and in vivo studies demonstrated 68Ga-iFAP-specific recognition for FAP, rapid renal elimination, and adequate visualization of the glioblastoma, breast tumor, prostate cancer, and myocardial infarction sites. The results of this research justify further dosimetry and clinical trials to establish the specificity and sensitivity of 68Ga-iFAP PET for FAP expression imaging.
Collapse
Affiliation(s)
- Diana Trujillo-Benítez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (D.T.-B.); (C.S.-C.)
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50180, Mexico
| | - Myrna Luna-Gutiérrez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (D.T.-B.); (C.S.-C.)
| | - José G. Aguirre-De Paz
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (D.T.-B.); (C.S.-C.)
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50180, Mexico
| | - Pedro Cruz-Nova
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (D.T.-B.); (C.S.-C.)
| | | | - Joel E. Vargas-Ahumada
- Nuclear Medicine Department, Instituto Nacional de Cardiología, Mexico City 14000, Mexico
| | - Paola Vallejo-Armenta
- Nuclear Medicine Department, Instituto Nacional de Cancerología, Mexico City 14000, Mexico
| | - Enrique Morales-Avila
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50180, Mexico
| | | | | | - Clara Santos-Cuevas
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (D.T.-B.); (C.S.-C.)
| | - Erika Azorín-Vega
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (D.T.-B.); (C.S.-C.)
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (D.T.-B.); (C.S.-C.)
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (D.T.-B.); (C.S.-C.)
| |
Collapse
|
6
|
Ferro-Flores G, Ancira-Cortez A, Ocampo-García B, Meléndez-Alafort L. Molecularly Targeted Lanthanide Nanoparticles for Cancer Theranostic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:296. [PMID: 38334567 PMCID: PMC10857384 DOI: 10.3390/nano14030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Injectable colloidal solutions of lanthanide oxides (nanoparticles between 10 and 100 nm in size) have demonstrated high biocompatibility and no toxicity when the nanoparticulate units are functionalized with specific biomolecules that molecularly target various proteins in the tumor microenvironment. Among the proteins successfully targeted by functionalized lanthanide nanoparticles are folic receptors, fibroblast activation protein (FAP), gastrin-releasing peptide receptor (GRP-R), prostate-specific membrane antigen (PSMA), and integrins associated with tumor neovasculature. Lutetium, samarium, europium, holmium, and terbium, either as lanthanide oxide nanoparticles or as nanoparticles doped with lanthanide ions, have demonstrated their theranostic potential through their ability to generate molecular images by magnetic resonance, nuclear, optical, or computed tomography imaging. Likewise, photodynamic therapy, targeted radiotherapy (neutron-activated nanoparticles), drug delivery guidance, and image-guided tumor therapy are some examples of their potential therapeutic applications. This review provides an overview of cancer theranostics based on lanthanide nanoparticles coated with specific peptides, ligands, and proteins targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (G.F.-F.); (A.A.-C.); (B.O.-G.)
| | - Alejandra Ancira-Cortez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (G.F.-F.); (A.A.-C.); (B.O.-G.)
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (G.F.-F.); (A.A.-C.); (B.O.-G.)
| | - Laura Meléndez-Alafort
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35138 Padova, Italy
| |
Collapse
|
7
|
Luna-Gutiérrez M, Cruz-Nova P, Jiménez-Mancilla N, Oros-Pantoja R, Lara-Almazán N, Santos-Cuevas C, Azorín-Vega E, Ocampo-García B, Ferro-Flores G. Synthesis and Evaluation of 177Lu-DOTA-PD-L1-i and 225Ac-HEHA-PD-L1-i as Potential Radiopharmaceuticals for Tumor Microenvironment-Targeted Radiotherapy. Int J Mol Sci 2023; 24:12382. [PMID: 37569758 PMCID: PMC10418980 DOI: 10.3390/ijms241512382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Current cancer therapies focus on reducing immunosuppression and remodeling the tumor microenvironment to inhibit metastasis, cancer progression, and therapeutic resistance. Programmed death receptor 1 (PD-1) is expressed on immune T cells and is one of the so-called checkpoint proteins that can suppress or stop the immune response. To evade the immune system, cancer cells overexpress a PD-1 inhibitor protein (PD-L1), which binds to the surface of T cells to activate signaling pathways that induce immune suppression. This research aimed to synthesize PD-L1 inhibitory peptides (PD-L1-i) labeled with lutetium-177 (177Lu-DOTA-PD-L1-i) and actinium-225 (225Ac-HEHA-PD-L1-i) and to preclinically evaluate their potential as radiopharmaceuticals for targeted radiotherapy at the tumor microenvironment level. Using PD-L1-i peptide as starting material, conjugation with HEHA-benzene-SCN and DOTA-benzene-SCN was performed to yield DOTA-PD-L1-i and HEHA-PD-L1-I, which were characterized by FT-IR, UV-vis spectroscopy, and HPLC. After labeling the conjugates with 225Ac and 177Lu, cellular uptake in HCC827 cancer cells (PD-L1 positive), conjugate specificity evaluation by immunofluorescence, radiotracer effect on cell viability, biodistribution, biokinetics, and assessment of radiation absorbed dose in mice with in duced lung micrometastases were performed. 225Ac-HEHA-PD-L1-i and 177Lu-DOTA-PD-L1-i, obtained with radiochemical purities of 95 ± 3% and 98.5 ± 0.5%, respectively, showed in vitro and in vivo specific recognition for the PD-L1 protein in lung cancer cells and high uptake in HCC287 lung micrometastases (>30% ID). The biokinetic profiles of 177Lu-DOTA-PD-L1-i and 225Ac-DOTA-PD-L1-i showed rapid blood clearance with renal and hepatobiliary elimination and no accumulation in normal tissues. 225Ac-DOTA-PD-L1-i produced a radiation dose of 5.15 mGy/MBq to lung micrometastases. In the case of 177Lu-DOTA-PD-L1-i, the radiation dose delivered to the lung micrometastases was ten times (43 mGy/MBq) that delivered to the kidneys (4.20 mGy/MBq) and fifty times that delivered to the liver (0.85 mGy/MBq). Therefore, the radiotherapeutic PD-L1-i ligands of 225Ac and 177Lu developed in this research could be combined with immunotherapy to enhance the therapeutic effect in various types of cancer.
Collapse
Affiliation(s)
- Myrna Luna-Gutiérrez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico (E.A.-V.)
| | - Pedro Cruz-Nova
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico (E.A.-V.)
| | | | | | - Nancy Lara-Almazán
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico (E.A.-V.)
| | - Clara Santos-Cuevas
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico (E.A.-V.)
| | - Erika Azorín-Vega
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico (E.A.-V.)
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico (E.A.-V.)
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico (E.A.-V.)
| |
Collapse
|
8
|
Cruz-Nova P, Gibbens-Bandala B, Ancira-Cortez A, Ramírez-Nava G, Santos-Cuevas C, Luna-Gutiérrez M, Ocampo-García B. Chemo-radiotherapy with 177Lu-PLGA(RGF)-CXCR4L for the targeted treatment of colorectal cancer. Front Med (Lausanne) 2023; 10:1191315. [PMID: 37378300 PMCID: PMC10292846 DOI: 10.3389/fmed.2023.1191315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction More than 1.9 million new cases of colorectal cancer and 935,000 deaths were estimated to have occurred worldwide in 2020. Therapies for metastatic colorectal cancer include cytotoxic chemotherapy and targeted therapies in multiple lines of treatment. Nevertheless, the optimal use of these agents has not yet been resolved. Regorafenib (RGF) is an Food and Drug Administration (FDA)-authorized multikinase inhibitor indicated for patients with metastatic colorectal cancer, non-responding to priority lines of chemotherapy and immunotherapy. Nanoparticles have been used in specific applications, such as site-specific drug delivery systems, cancer therapy, and clinical bioanalytical diagnostics. C-X-C Chemokine receptor type 4 (CXCR4) is the most widely-expressed chemokine receptor in more than 23 human cancer types, including colorectal cancer. This research aimed to synthesize and preclinically evaluate a targeted nanosystem for colorectal cancer chemo-radiotherapy using RGF encapsulated in Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles coated with a CXCR4 ligand (CXCR4L) and 177Lu as a therapeutic β-emitter. Methods Empty PLGA and PLGA(RGF) nanoparticles were prepared using the microfluidic method, followed by the DOTA and CXCR4L functionalization and nanoparticle radiolabeling with 177Lu. The final nanosystem gave a particle size of 280 nm with a polydispersity index of 0.347. In vitro and in vivo toxicity effects were assessed using the HCT116 colorectal cancer cell line. Results 177Lu-PLGA(RGF)-CXCR4L nanoparticles decreased cell viability and proliferation by inhibiting Erk and Akt phosphorylation and promoting apoptosis. Moreover, in vivo administration of 177Lu-PLGA(RGF)-CXCR4L significantly reduced tumor growth in an HCT116 colorectal cancer xenograft model. The biokinetic profile showed hepatic and renal elimination. Discussion Data obtained in this research justify additional preclinical safety trials and the clinical evaluation of 177Lu-PLGA(RGF)-CXCR4L as a potential combined treatment of colorectal cancer.
Collapse
Affiliation(s)
- Pedro Cruz-Nova
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, Mexico
| | - Brenda Gibbens-Bandala
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, Mexico
| | - Alejandra Ancira-Cortez
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, Mexico
| | - Gerardo Ramírez-Nava
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Mexico City, Mexico
| | - Clara Santos-Cuevas
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, Mexico
| | - Myrna Luna-Gutiérrez
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, Mexico
| | - Blanca Ocampo-García
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, Mexico
| |
Collapse
|
9
|
Hernández-Jiménez T, Cruz-Nova P, Ancira-Cortez A, Gibbens-Bandala B, Lara-Almazán N, Ocampo-García B, Santos-Cuevas C, Morales-Avila E, Ferro-Flores G. Toxicity Assessment of [ 177Lu]Lu-iFAP/iPSMA Nanoparticles Prepared under GMP-Compliant Radiopharmaceutical Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234181. [PMID: 36500804 PMCID: PMC9739705 DOI: 10.3390/nano12234181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/08/2023]
Abstract
The fibroblast activation protein (FAP) is heavily expressed in fibroblasts associated with the tumor microenvironment, while the prostate-specific membrane antigen (PSMA) is expressed in the neovasculature of malignant angiogenic processes. Previously, we reported that [177Lu]lutetium sesquioxide-iFAP/iPSMA nanoparticles ([177Lu]Lu-iFAP/iPSMA) inhibit HCT116 tumor progression in mice. Understanding the toxicity of [177Lu]Lu-iFAP/iPSMA in healthy tissues, as well as at the tissue and cellular level in pathological settings, is essential to demonstrate the nanosystem safety for treating patients. It is equally important to demonstrate that [177Lu]Lu-iFAP/iPSMA can be prepared under good manufacturing practices (GMP) with reproducible pharmaceutical-grade quality characteristics. This research aimed to prepare [177Lu]Lu-iFAP/iPSMA under GMP-compliant radiopharmaceutical processes and evaluate its toxicity in cell cultures and murine biological systems under pathological environments. [177Lu]Lu2O3 nanoparticles were formulated as radiocolloidal solutions with FAP and PSMA inhibitor ligands (iFAP and iPSMA), sodium citrate, and gelatin, followed by heating at 121 °C (103-kPa pressure) for 15 min. Three consecutive batches were manufactured. The final product was analyzed according to conventional pharmacopeial methods. The Lu content in the formulations was determined by X-ray fluorescence. [177Lu]Lu-iFAP/iPSMA performance in cancer cells was evaluated in vitro by immunofluorescence. Histopathological toxicity in healthy and tumor tissues was assessed in HCT116 tumor-bearing mice. Immunohistochemical assays were performed to corroborate FAP and PSMA tumor expression. Acute genotoxicity was evaluated using the micronuclei assay. The results showed that the batches manufactured under GMP conditions were reproducible. Radiocolloidal solutions were sterile and free of bacterial endotoxins, with radionuclidic and radiochemical purity greater than 99%. The lutetium content was 0.10 ± 0.02 mg/mL (0.9 GBq/mg). Significant inhibition of cell proliferation in vitro and in tumors was observed due to the accumulation of nanoparticles in the fibroblasts (FAP+) and neovasculature (PSMA+) of the tumor microenvironment. No histopathological damage was detected in healthy tissues. The data obtained in this research provide new evidence on the selective toxicity to malignant tumors and the absence of histological changes in healthy tissues after intravenous injection of [177Lu]Lu-iFAP/iPSMA in mammalian hosts. The easy preparation under GMP conditions and the toxicity features provide the added value needed for [177Lu]Lu-iFAP/iPSMA clinical translation.
Collapse
Affiliation(s)
- Tania Hernández-Jiménez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50180, Mexico
| | - Pedro Cruz-Nova
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico
| | - Alejandra Ancira-Cortez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico
| | - Brenda Gibbens-Bandala
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico
| | - Nancy Lara-Almazán
- Department of Chemical Analysis, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico
| | - Clara Santos-Cuevas
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico
| | - Enrique Morales-Avila
- Faculty of Chemistry, Universidad Autónoma del Estado de México, Toluca 50180, Mexico
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico
| |
Collapse
|
10
|
Zhou R, Zhao D, Beeraka NM, Wang X, Lu P, Song R, Chen K, Liu J. Novel Implications of Nanoparticle-Enhanced Radiotherapy and Brachytherapy: Z-Effect and Tumor Hypoxia. Metabolites 2022; 12:943. [PMID: 36295845 PMCID: PMC9612299 DOI: 10.3390/metabo12100943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 10/29/2023] Open
Abstract
Radiotherapy and internal radioisotope therapy (brachytherapy) induce tumor cell death through different molecular signaling pathways. However, these therapies in cancer patients are constrained by dose-related adverse effects and local discomfort due to the prolonged exposure to the surrounding tissues. Technological advancements in nanotechnology have resulted in synthesis of high atomic elements such as nanomaterials, which can be used as radiosensitizers due to their photoelectric characteristics. The aim of this review is to elucidate the effects of novel nanomaterials in the field of radiation oncology to ameliorate dose-related toxicity through the application of ideal nanoparticle-based radiosensitizers such as Au (gold), Bi (bismuth), and Lu (Lutetium-177) for enhancing cytotoxic effects of radiotherapy via the high-Z effect. In addition, we discuss the role of nanoparticle-enhanced radiotherapy in alleviating tumor hypoxia through the nanodelivery of genes/drugs and other functional anticancer molecules. The implications of engineered nanoparticles in preclinical and clinical studies still need to be studied in order to explore potential mechanisms for radiosensitization by minimizing tumor hypoxia, operational/logistic complications and by overcoming tumor heterogeneity in radiotherapy/brachytherapy.
Collapse
Affiliation(s)
- Runze Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Di Zhao
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Narasimha M. Beeraka
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Department of Pharmaceutical Chemistry, Jagadguru Sri Shivarathreeswara Academy of Higher Education and Research (JSS AHER), Jagadguru Sri Shivarathreeswara College of Pharmacy, Mysuru 570015, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Xiaoyan Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ruixia Song
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
11
|
Salvanou EA, Kolokithas-Ntoukas A, Liolios C, Xanthopoulos S, Paravatou-Petsotas M, Tsoukalas C, Avgoustakis K, Bouziotis P. Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents. NANOMATERIALS 2022; 12:nano12142490. [PMID: 35889715 PMCID: PMC9321329 DOI: 10.3390/nano12142490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022]
Abstract
Theranostic radioisotope pairs such as Gallium-68 (68Ga) for Positron Emission Tomography (PET) and Lutetium-177 (177Lu) for radioisotopic therapy, in conjunction with nanoparticles (NPs), are an emerging field in the treatment of cancer. The present work aims to demonstrate the ability of condensed colloidal nanocrystal clusters (co-CNCs) comprised of iron oxide nanoparticles, coated with alginic acid (MA) and stabilized by a layer of polyethylene glycol (MAPEG) to be directly radiolabeled with 68Ga and its therapeutic analog 177Lu. 68Ga/177Lu- MA and MAPEG were investigated for their in vitro stability. The biocompatibility of the non-radiolabeled nanoparticles, as well as the cytotoxicity of MA, MAPEG, and [177Lu]Lu-MAPEG were assessed on 4T1 cells. Finally, the ex vivo biodistribution of the 68Ga-labeled NPs as well as [177Lu]Lu-MAPEG was investigated in normal mice. Radiolabeling with both radioisotopes took place via a simple and direct labelling method without further purification. Hemocompatibility was verified for both NPs, while MTT studies demonstrated the non-cytotoxic profile of the nanocarriers and the dose-dependent toxicity for [177Lu]Lu-MAPEG. The radiolabeled nanoparticles mainly accumulated in RES organs. Based on our preliminary results, we conclude that MAPEG could be further investigated as a theranostic agent for PET diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Evangelia-Alexandra Salvanou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (E.-A.S.); (C.L.); (S.X.); (M.P.-P.); (C.T.)
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (A.K.-N.); (K.A.)
| | - Argiris Kolokithas-Ntoukas
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (A.K.-N.); (K.A.)
| | - Christos Liolios
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (E.-A.S.); (C.L.); (S.X.); (M.P.-P.); (C.T.)
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Stavros Xanthopoulos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (E.-A.S.); (C.L.); (S.X.); (M.P.-P.); (C.T.)
| | - Maria Paravatou-Petsotas
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (E.-A.S.); (C.L.); (S.X.); (M.P.-P.); (C.T.)
| | - Charalampos Tsoukalas
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (E.-A.S.); (C.L.); (S.X.); (M.P.-P.); (C.T.)
| | - Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (A.K.-N.); (K.A.)
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (E.-A.S.); (C.L.); (S.X.); (M.P.-P.); (C.T.)
- Correspondence: ; Tel.: +30-2106503687
| |
Collapse
|
12
|
Cruz-Nova P, Ancira-Cortez A, Ferro-Flores G, Ocampo-García B, Gibbens-Bandala B. Controlled-Release Nanosystems with a Dual Function of Targeted Therapy and Radiotherapy in Colorectal Cancer. Pharmaceutics 2022; 14:pharmaceutics14051095. [PMID: 35631681 PMCID: PMC9145578 DOI: 10.3390/pharmaceutics14051095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles are excellent platforms for several biomedical applications, including cancer treatment. They can incorporate different molecules to produce combinations of chemotherapeutic agents, radionuclides, and targeting molecules to improve the therapeutic strategies against cancer. These specific nanosystems are designed to have minimal side effects on healthy cells and better treatment efficacy against cancer cells when compared to chemotherapeutics, external irradiation, or targeted radiotherapy alone. In colorectal cancer, some metal and polymeric nanoparticle platforms have been used to potentialize external radiation therapy and targeted drug delivery. Polymeric nanoparticles, liposomes, albumin-based nanoparticles, etc., conjugated with PEG and/or HLA, can be excellent platforms to increase blood circulation time and decrease side effects, in addition to the combination of chemo/radiotherapy, which increases therapeutic efficacy. Additionally, radiolabeled nanoparticles have been conjugated to target specific tissues and are mainly used as agents for diagnosis, drug/gene delivery systems, or plasmonic photothermal therapy enhancers. This review aims to analyze how nanosystems are shaping combinatorial therapy and evaluate their status in the treatment of colorectal cancer.
Collapse
|
13
|
Coria-Domínguez L, Vallejo-Armenta P, Luna-Gutiérrez M, Ocampo-García B, Gibbens-Bandala B, García-Pérez F, Ramírez-Nava G, Santos-Cuevas C, Ferro-Flores G. [ 99mTc]Tc-iFAP Radioligand for SPECT/CT Imaging of the Tumor Microenvironment: Kinetics, Radiation Dosimetry, and Imaging in Patients. Pharmaceuticals (Basel) 2022; 15:ph15050590. [PMID: 35631416 PMCID: PMC9143259 DOI: 10.3390/ph15050590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
Tumor microenvironment fibroblasts overexpress the fibroblast activation protein (FAP). We recently reported the preclinical evaluation of [99mTc]Tc-iFAP as a new SPECT radioligand capable of detecting FAP. This research aimed to evaluate the kinetic and dosimetric profile of [99mTc]Tc-iFAP in healthy volunteers, and to assess the radioligand uptake by different solid tumors in three cancer patients. [99mTc]Tc-iFAP was obtained from lyophilized formulations prepared under GMP conditions with >98% radiochemical purity. Whole-body scans of six healthy subjects were obtained at 0.5, 2, 4, and 24 h after [99mTc]Tc-iFAP (740 MBq) administration. A 2D-planar/3D-SPECT hybrid activity quantitation method was used to fit the biokinetic models of the source organs (volume of interest: VOI) as exponential functions (A(t)VOI). The total nuclear transformations (N) that occurred in the source organs were calculated from the mathematical integration (0,∞) of A(t)VOI. The OLINDA code was used to estimate the radiation doses. Three treatment-naive patients (breast, lung, and cervical cancer) with a prior [18F]FDG PET/CT scan underwent whole-body, chest, and abdominal SPECT/CT scanning after [99mTc]Tc-iFAP (740 MBq) administration. Both imaging methods were compared visually and quantitatively. Oncological diagnoses were performed histopathologically. The results showed favorable [99mTc]Tc-iFAP biodistribution and kinetics due to rapid blood activity removal (t1/2α = 2.22 min and t1/2β = 90 min) and mainly renal clearance. The mean radiation equivalent doses were 5.2 ± 0.8 mSv for the kidney and 1.7 ± 0.3 mSv for the liver after administration of 740 MBq. The effective dose was 2.3 ± 0.4 mSv/740 MBq. [99mTc]Tc-iFAP demonstrated high and reliable uptake in the primary tumor lesions and lymph node metastases in patients with breast, cervical, and lung cancer, which correlated with that detected by [18F]FDG PET/CT. The tumor microenvironment molecular imaging from cancer patients obtained in this research validates the performance of additional clinical studies to determine the utility of [99mTc]Tc-iFAP in the diagnosis and prognosis of different types of solid tumors.
Collapse
Affiliation(s)
- Luis Coria-Domínguez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Mexico
| | - Paola Vallejo-Armenta
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
| | - Myrna Luna-Gutiérrez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
| | - Brenda Gibbens-Bandala
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
| | - Francisco García-Pérez
- Department of Nuclear Medicine, Instituto Nacional de Cancerología, Tlalpan, Mexico City 14080, Mexico;
| | - Gerardo Ramírez-Nava
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
- Correspondence: (G.R.-N.); (C.S.-C.); (G.F.-F.)
| | - Clara Santos-Cuevas
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
- Correspondence: (G.R.-N.); (C.S.-C.); (G.F.-F.)
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (L.C.-D.); (P.V.-A.); (M.L.-G.); (B.O.-G.); (B.G.-B.)
- Correspondence: (G.R.-N.); (C.S.-C.); (G.F.-F.)
| |
Collapse
|