1
|
Geng F, Liu J, Liu J, Lu Z, Pan Y. Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm. Crit Rev Microbiol 2024:1-19. [PMID: 39648406 DOI: 10.1080/1040841x.2024.2438117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Dental biofilm is a highly complicated and dynamic structure comprising not only microbial communities but also the surrounding matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA (eDNA) and other biopolymers. In recent years, the important role of bacterial eDNA in dental biofilms has gradually attracted attention. In this review, we present recent studies on the presence, dynamic conformation and release of oral bacterial eDNA. Moreover, updated information on functions associated with oral bacterial eDNA in biofilm formation, antibiotic resistance, activation of the immune system and immune evasion is highlighted. Finally, we summarize the role of oral bacterial eDNA as a promising target for the treatment of oral diseases. Increasing insight into the versatile roles of bacterial eDNA in dental biofilms will facilitate the prevention and treatment of biofilm-induced oral infections.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jinwen Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ze Lu
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Huang X, Bao J, Yang M, Li Y, Liu Y, Zhai Y. The role of Lactobacillus plantarum in oral health: a review of current studies. J Oral Microbiol 2024; 16:2411815. [PMID: 39444695 PMCID: PMC11497578 DOI: 10.1080/20002297.2024.2411815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/09/2024] [Accepted: 08/27/2024] [Indexed: 10/25/2024] Open
Abstract
Background Oral non-communicable diseases, particularly dental caries and periodontal disease, impose a significant global health burden. The underlying microbial dysbiosis is a prominent factor, driving interest in strategies that promote a balanced oral microbiome. Lactobacillus plantarum, a gram-positive lactic acid bacterium known for its adaptability, has gained attention for its potential to enhance oral health. Recent studies have explored the use of probiotic L. plantarum in managing dental caries, periodontal disease, and apical periodontitis. However, a comprehensive review on its effects in this context is still lacking. Aims This narrative review evaluates current literature on L. plantarum's role in promoting oral health and highlights areas for future research. Content In general, the utilization of L. plantarum in managing non-communicable biofilm-dependent oral diseases is promising, but additional investigations are warranted. Key areas for future study include: exploring its mechanisms of action, identifying optimal strains or strain combinations of L. plantarum, determining effective delivery methods and dosages, developing commercial antibacterial agents from L. plantarum, and addressing safety considerations related to its use in oral care.
Collapse
Affiliation(s)
- Xinyan Huang
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Jianhang Bao
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| | - Mingzhen Yang
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| | - Yingying Li
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Youwen Liu
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| |
Collapse
|
3
|
Mrinalini M, Gupta A, Abraham D, Duraisamy AK, Sharma R. A Systematic Review of the Comparative Efficacy of Lactobacillus Probiotics and Sodium Hypochlorite as Intracanal Irrigants Against Enterococcus faecalis. Cureus 2024; 16:e70926. [PMID: 39502981 PMCID: PMC11536786 DOI: 10.7759/cureus.70926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/06/2024] [Indexed: 11/08/2024] Open
Abstract
Irrigation plays a pivotal role in the success of root canal treatments. The development of innovative, less hazardous irrigating solutions is necessary because of the inherent limitations of the gold standard, sodium hypochlorite. Since probiotics have proven to be effective in treating common oral diseases such as periodontitis and dental caries, they have gained attention in the field of endodontics as well. The present systematic review aims to assess the efficacy of Lactobacillus probiotics against Enterococcus faecalis compared to that of sodium hypochlorite. A thorough search of five databases, PubMed, Scopus, EBSCOhost, ScienceDirect, and BVS (Biblioteca Virtual en Salud, or Virtual Health Library), from January 2000 to January 2024 yielded 135 articles after a preliminary search. Three research publications that satisfied the strict inclusion and exclusion criteria were charted after the removal of duplicates and careful examination of the full-text articles. The Quality Assessment Tool for In Vitro Studies (QUIN Tool) was used to assess the quality of the study, aiming to identify any risk of bias. All three publications had a low risk of bias and demonstrated that Lactobacillus species were effective against E. faecalis and proved to be a safer alternative to sodium hypochlorite as an intracanal irrigant. However, more clinical trials are required to determine the best probiotic combinations, appropriate probiotic carriers, and ideal dosage and frequency of administration before using probiotics as intracanal irrigants in clinical trials.
Collapse
Affiliation(s)
- Mrinalini Mrinalini
- Department of Conservative Dentistry and Endodontics, Manav Rachna Dental College, Faridabad, IND
| | - Alpa Gupta
- Department of Conservative Dentistry and Endodontics, Manav Rachna Dental College, Faridabad, IND
| | - Dax Abraham
- Department of Conservative Dentistry and Endodontics, Manav Rachna Dental College, Faridabad, IND
| | - Arun Kumar Duraisamy
- Department of Conservative Dentistry and Endodontics, Manav Rachna Dental College, Faridabad, IND
| | - Rajat Sharma
- Department of Conservative Dentistry and Endodontics, Manav Rachna Dental College, Faridabad, IND
| |
Collapse
|
4
|
Saini P, Ayyanna R, Kumar R, Bhowmick SK, Bhaskar V, Dey B. Restriction of growth and biofilm formation of ESKAPE pathogens by caprine gut-derived probiotic bacteria. Front Microbiol 2024; 15:1428808. [PMID: 39135871 PMCID: PMC11317286 DOI: 10.3389/fmicb.2024.1428808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
The accelerated rise in antimicrobial resistance (AMR) poses a significant global health risk, necessitating the exploration of alternative strategies to combat pathogenic infections. Biofilm-related infections that are unresponsive to standard antibiotics often require the use of higher-order antimicrobials with toxic side effects and the potential to disrupt the microbiome. Probiotic therapy, with its diverse benefits and inherent safety, is emerging as a promising approach to prevent and treat various infections, and as an alternative to antibiotic therapy. In this study, we isolated novel probiotic bacteria from the gut of domestic goats (Capra hircus) and evaluated their antimicrobial and anti-biofilm activities against the 'ESKAPE' group of pathogens. We performed comprehensive microbiological, biochemical, and molecular characterizations, including analysis of the 16S-rRNA gene V1-V3 region and the 16S-23S ISR region, on 20 caprine gut-derived lactic acid bacteria (LAB). Among these, six selected Lactobacillus isolates demonstrated substantial biofilm formation under anaerobic conditions and exhibited robust cell surface hydrophobicity and autoaggregation, and epithelial cell adhesion properties highlighting their superior enteric colonization capability. Notably, these Lactobacillus isolates exhibited broad-spectrum growth inhibitory and anti-biofilm properties against 'ESKAPE' pathogens. Additionally, the Lactobacillus isolates were susceptible to antibiotics listed by the European Food Safety Authority (EFSA) within the prescribed Minimum Inhibitory Concentration limits, suggesting their safety as feed additives. The remarkable probiotic characteristics exhibited by the caprine gut-derived Lactobacillus isolates in this study strongly endorse their potential as compelling alternatives to antibiotics and direct-fed microbial (DFM) feed supplements in the livestock industry, addressing the escalating need for antibiotic-free animal products.
Collapse
Affiliation(s)
- Prerna Saini
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Repally Ayyanna
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Rishi Kumar
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sayan Kumar Bhowmick
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Vinay Bhaskar
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Bappaditya Dey
- National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
5
|
Yang S, Meng X, Zhen Y, Baima Q, Wang Y, Jiang X, Xu Z. Strategies and mechanisms targeting Enterococcus faecalis biofilms associated with endodontic infections: a comprehensive review. Front Cell Infect Microbiol 2024; 14:1433313. [PMID: 39091674 PMCID: PMC11291369 DOI: 10.3389/fcimb.2024.1433313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Enterococcus faecalis is one of the main microorganisms that infects root canals, ranking among the most prevalent microorganisms associated with endodontic treatment failure. Given its pervasive presence in persistent endodontic infections, the successful elimination of Enterococcus faecalis is crucial for effective endodontic treatment and retreatment. Furthermore, Enterococcus faecalis can form biofilms - defense structures that microbes use to fight environmental threats. These biofilms confer resistance against host immune system attacks and antibiotic interventions. Consequently, the presence of biofilms poses a significant challenge in the complete eradication of Enterococcus faecalis and its associated disease. In response, numerous scholars have discovered promising outcomes in addressing Enterococcus faecalis biofilms within root canals and undertaken endeavors to explore more efficacious approaches in combating these biofilms. This study provides a comprehensive review of strategies and mechanisms for the removal of Enterococcus faecalis biofilms.
Collapse
Affiliation(s)
- Shipeng Yang
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiuping Meng
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuqi Zhen
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Quzhen Baima
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Wang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinmiao Jiang
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhibo Xu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
6
|
Kolodkin-Gal I, Dash O, Rak R. Probiotic cultivated meat: bacterial-based scaffolds and products to improve cultivated meat. Trends Biotechnol 2024; 42:269-281. [PMID: 37805297 DOI: 10.1016/j.tibtech.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Cultivated meat is emerging to replace traditional livestock industries, which have ecological costs, including land and water overuse and considerable carbon emissions. During cultivated meat production, mammalian cells can increase their numbers dramatically through self-renewal/proliferation and transform into mature cells, such as muscle or fat cells, through maturation/differentiation. Here, we address opportunities for introducing probiotic bacteria into the cultivated meat industry, including using them to produce renewable antimicrobials and scaffolding materials. We also offer solutions to challenges, including the growth of bacteria and mammalian cells, the effect of probiotic bacteria on production costs, and the effect of bacteria and their products on texture and taste. Our summary provides a promising framework for applying microbial composites in the cultivated meat industry.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| | - Orit Dash
- Department of Animal Sciences, Faculty of Agriculture and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel; Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Roni Rak
- Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
7
|
Zanditenas E, Trebicz-Geffen M, Kolli D, Domínguez-García L, Farhi E, Linde L, Romero D, Chapman M, Kolodkin-Gal I, Ankri S. Digestive exophagy of biofilms by intestinal amoeba and its impact on stress tolerance and cytotoxicity. NPJ Biofilms Microbiomes 2023; 9:77. [PMID: 37813896 PMCID: PMC10562373 DOI: 10.1038/s41522-023-00444-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
The human protozoan parasite Entamoeba histolytica is responsible for amebiasis, a disease endemic to developing countries. E. histolytica trophozoites colonize the large intestine, primarily feeding on bacteria. However, in the gastrointestinal tract, bacterial cells form aggregates or structured communities called biofilms too large for phagocytosis. Remarkably, trophozoites are still able to invade and degrade established biofilms, utilizing a mechanism that mimics digestive exophagy. Digestive exophagy refers to the secretion of digestive enzymes that promote the digestion of objects too large for direct phagocytosis by phagocytes. E. histolytica cysteine proteinases (CPs) play a crucial role in the degradation process of Bacillus subtilis biofilm. These proteinases target TasA, a major component of the B. subtilis biofilm matrix, also contributing to the adhesion of the parasite to the biofilm. In addition, they are also involved in the degradation of biofilms formed by Gram-negative and Gram-positive enteric pathogens. Furthermore, biofilms also play an important role in protecting trophozoites against oxidative stress. This specific mechanism suggests that the amoeba has adapted to prey on biofilms, potentially serving as an untapped reservoir for novel therapeutic approaches to treat biofilms. Consistently, products derived from the amoeba have been shown to restore antibiotic sensitivity to biofilm cells. In addition, our findings reveal that probiotic biofilms can act as a protective shield for mammalian cells, hindering the progression of the parasite towards them.
Collapse
Affiliation(s)
- Eva Zanditenas
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Divya Kolli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Laura Domínguez-García
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Einan Farhi
- Technion Genomics Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Liat Linde
- Technion Genomics Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Diego Romero
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Matthew Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Ilana Kolodkin-Gal
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
- Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
8
|
Suissa R, Olender T, Malitsky S, Golani O, Turjeman S, Koren O, Meijler MM, Kolodkin-Gal I. Metabolic inputs in the probiotic bacterium Lacticaseibacillus rhamnosus contribute to cell-wall remodeling and increased fitness. NPJ Biofilms Microbiomes 2023; 9:71. [PMID: 37752249 PMCID: PMC10522624 DOI: 10.1038/s41522-023-00431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Lacticaseibacillus rhamnosus GG (LGG) is a Gram-positive beneficial bacterium that resides in the human intestinal tract and belongs to the family of lactic acid bacteria (LAB). This bacterium is a widely used probiotic and was suggested to provide numerous benefits for human health. However, as in most LAB strains, the molecular mechanisms that mediate the competitiveness of probiotics under different diets remain unknown. Fermentation is a fundamental process in LAB, allowing the oxidation of simple carbohydrates (e.g., glucose, mannose) for energy production under oxygen limitation, as in the human gut. Our results indicate that fermentation reshapes the metabolome, volatilome, and proteome architecture of LGG. Furthermore, fermentation alters cell envelope remodeling and peptidoglycan biosynthesis, which leads to altered cell wall thickness, aggregation properties, and cell wall composition. In addition, fermentable sugars induced the secretion of known and novel metabolites and proteins targeting the enteric pathogens Enterococcus faecalis and Salmonella enterica Serovar Typhimurium. Overall, our results link simple carbohydrates with cell wall remodeling, aggregation to host tissues, and biofilm formation in probiotic strains and connect them with the production of broad-spectrum antimicrobial effectors.
Collapse
Affiliation(s)
- Ronit Suissa
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | - Michael M Meijler
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Ilana Kolodkin-Gal
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
- The Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| |
Collapse
|
9
|
Luo X, Wan Q, Cheng L, Xu R. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis. Front Cell Infect Microbiol 2022; 12:908859. [PMID: 35937695 PMCID: PMC9353524 DOI: 10.3389/fcimb.2022.908859] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Chronic periapical periodontitis (CAP) is a typical oral disease in which periodontal inflammation caused by an odontogenic infection eventually leads to bone loss. Uncontrolled infections often lead to extensive bone loss around the root tip, which ultimately leads to tooth loss. The main clinical issue in the treatment of periapical periodontitis is the repair of jawbone defects, and infection control is the first priority. However, the oral cavity is an open environment, and the distribution of microorganisms through the mouth in jawbone defects is inevitable. The subversion of host cell metabolism by oral microorganisms initiates disease. The presence of microorganisms stimulates a series of immune responses, which in turn stimulates bone healing. Given the above background, we intended to examine the paradoxes and connections between microorganisms and jaw defect repair in anticipation of new ideas for jaw defect repair. To this end, we reviewed the microbial factors, human signaling pathways, immune cells, and cytokines involved in the development of CAP, as well as concentrated growth factor (CGF) and stem cells in bone defect repair, with the aim of understanding the impact of microbial factors on host cell metabolism to inform the etiology and clinical management of CAP.
Collapse
Affiliation(s)
| | | | - Lei Cheng
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| | - Ruoshi Xu
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| |
Collapse
|
10
|
Kolodkin-Gal I, Cohen-Cymberknoh M, Zamir G, Tsesis I, Rosen E. Targeting Persistent Biofilm Infections: Reconsidering the Topography of the Infection Site during Model Selection. Microorganisms 2022; 10:microorganisms10061164. [PMID: 35744683 PMCID: PMC9231179 DOI: 10.3390/microorganisms10061164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/17/2022] Open
Abstract
The physiology of an organism in the environment reflects its interactions with the diverse physical, chemical, and biological properties of the surface. These principles come into consideration during model selection to study biofilm–host interactions. Biofilms are communities formed by beneficial and pathogenic bacteria, where cells are held together by a structured extracellular matrix. When biofilms are associated with a host, chemical gradients and their origins become highly relevant. Conventional biofilm laboratory models such as multiwall biofilm models and agar plate models poorly mimic these gradients. In contrast, ex vivo models possess the partial capacity to mimic the conditions of tissue-associated biofilm and a biofilm associated with a mineralized surface enriched in inorganic components, such as the human dentin. This review will highlight the progress achieved using these settings for two models of persistent infections: the infection of the lung tissue by Pseudomonas aeruginosa and the infection of the root canal by Enterococcus faecalis. For both models, we conclude that the limitations of the conventional in vitro systems necessitate a complimentary experimentation with clinically relevant ex vivo models during therapeutics development.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- Correspondence: (I.K.-G.); (I.T.); (E.R.)
| | - Malena Cohen-Cymberknoh
- Pediatric Pulmonary Unit and Cystic Fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Gideon Zamir
- Department of Experimental Surgery, Hadassah Hebrew University Medical School, Jerusalem 9112001, Israel;
| | - Igor Tsesis
- Department of Endodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (I.K.-G.); (I.T.); (E.R.)
| | - Eyal Rosen
- Department of Endodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (I.K.-G.); (I.T.); (E.R.)
| |
Collapse
|