1
|
Martincic M, Tobías-Rossell G. UV-Vis quantification of the iron content in iteratively steam and HCl purified single-walled carbon nanotubes. PLoS One 2024; 19:e0303359. [PMID: 38728321 PMCID: PMC11086872 DOI: 10.1371/journal.pone.0303359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
As-produced carbon nanotubes contain impurities which can dominate the properties of the material and are thus undesired. Herein we present a multi-step purification treatment that combines the use of steam and hydrochloric acid in an iterative manner. This allows the reduction of the iron content down to 0.2 wt. % in samples of single-walled carbon nanotubes (SWCNTs). Remarkably, Raman spectroscopy analysis reveals that this purification strategy does not introduce structural defects into the SWCNTs' backbone. To complete the study, we also report on a simplified approach for the quantitative assessment of iron using UV-Vis spectroscopy. The amount of metal in SWCNTs is assessed by dissolving in HCl the residue obtained after the complete combustion of the sample. This leads to the creation of hexaaquairon(III) chloride which allows the determination of the amount of iron, from the catalyst, by UV-Vis spectroscopy. The main advantage of the proposed strategy is that it does not require the use of additional complexing agents.
Collapse
Affiliation(s)
- Markus Martincic
- Institut de Ciència de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Barcelona, Spain
| | - Gerard Tobías-Rossell
- Institut de Ciència de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
2
|
Fatima Qizilbash F, Sartaj A, Qamar Z, Kumar S, Imran M, Mohammed Y, Ali J, Baboota S, Ali A. Nanotechnology revolutionises breast cancer treatment: harnessing lipid-based nanocarriers to combat cancer cells. J Drug Target 2023; 31:794-816. [PMID: 37525966 DOI: 10.1080/1061186x.2023.2243403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
One of the most common cancers that occur in females is breast cancer. Despite the significant leaps and bounds that have been made in treatment of breast cancer, the disease remains one of the leading causes of death among women and a major public health challenge. The therapeutic efficacy of chemotherapeutics is hindered by chemoresistance and toxicity. Nano-based lipid drug delivery systems offer controlled drug release, nanometric size and site-specific targeting. Breast cancer treatment includes surgery, chemotherapy and radiotherapy. Despite this, no single method of treatment for the condition is currently effective due to cancer stem cell metastasis and chemo-resistance. Therefore, the employment of nanocarrier systems is necessary in order to target breast cancer stem cells. This article addresses breast cancer treatment options, including modern treatment procedures such as chemotherapy, etc. and some innovative therapeutic options highlighting the role of lipidic nanocarriers loaded with chemotherapeutic drugs such as nanoemulsion, solid-lipid nanoparticles, nanostructured lipid carriers and liposomes, and their investigations have demonstrated that they can limit cancer cell growth, reduce the risk of recurrence, as well as minimise post-chemotherapy metastasis. This article also explores FDA-approved lipid-based nanocarriers, commercially available formulations, and ligand-based formulations that are being considered for further research.
Collapse
Affiliation(s)
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
- Lloyd School of Pharmacy, Greater Noida, India
| | - Zufika Qamar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, India
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Yousuf Mohammed
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
3
|
Ma J, Wang G, Ding X, Wang F, Zhu C, Rong Y. Carbon-Based Nanomaterials as Drug Delivery Agents for Colorectal Cancer: Clinical Preface to Colorectal Cancer Citing Their Markers and Existing Theranostic Approaches. ACS OMEGA 2023; 8:10656-10668. [PMID: 37008124 PMCID: PMC10061522 DOI: 10.1021/acsomega.2c06242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Colorectal cancer (CRC) is one of the universally established cancers with a higher incidence rate. Novel progression toward cancer prevention and cancer care among countries in transition should be considered seriously for controlling CRC. Hence, several cutting edge technologies are ongoing for high performance cancer therapeutics over the past few decades. Several drug-delivery systems of the nanoregime are relatively new in this arena compared to the previous treatment modes such as chemo- or radiotherapy to mitigate cancer. Based on this background, the epidemiology, pathophysiology, clinical presentation, treatment possibilities, and theragnostic markers for CRC were revealed. Since the use of carbon nanotubes (CNTs) for the management of CRC has been less studied, the present review analyzes the preclinical studies on the application of carbon nanotubes for drug delivery and CRC therapy owing to their inherent properties. It also investigates the toxicity of CNTs on normal cells for safety testing and the clinical use of carbon nanoparticles (CNPs) for tumor localization. To conclude, this review recommends the clinical application of carbon-based nanomaterials further for the management of CRC in diagnosis and as carriers or therapeutic adjuvants.
Collapse
Affiliation(s)
- Jiheng Ma
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Guofang Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Xiaoyu Ding
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Fulin Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Chunning Zhu
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Yunxia Rong
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| |
Collapse
|
4
|
Elkalla E, Khizar S, Tarhini M, Lebaz N, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Core-shell micro/nanocapsules: from encapsulation to applications. J Microencapsul 2023; 40:125-156. [PMID: 36749629 DOI: 10.1080/02652048.2023.2178538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Encapsulation is the way to wrap or coat one substance as a core inside another tiny substance known as a shell at micro and nano scale for protecting the active ingredients from the exterior environment. A lot of active substances, such as flavours, enzymes, drugs, pesticides, vitamins, in addition to catalysts being effectively encapsulated within capsules consisting of different natural as well as synthetic polymers comprising poly(methacrylate), poly(ethylene glycol), cellulose, poly(lactide), poly(styrene), gelatine, poly(lactide-co-glycolide)s, and acacia. The developed capsules release the enclosed substance conveniently and in time through numerous mechanisms, reliant on the ultimate use of final products. Such technology is important for several fields counting food, pharmaceutical, cosmetics, agriculture, and textile industries. The present review focuses on the most important and high-efficiency methods for manufacturing micro/nanocapsules and their several applications in our life.
Collapse
Affiliation(s)
- Eslam Elkalla
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP UMR-5007, Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | |
Collapse
|
5
|
Carboxyl Functionalization of N-MWCNTs with Stone-Wales Defects and Possibility of HIF-1α Wave-Diffusive Delivery. Int J Mol Sci 2023; 24:ijms24021296. [PMID: 36674808 PMCID: PMC9866222 DOI: 10.3390/ijms24021296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) are widely used for drug delivery. One of the main challenges is to clarify their interaction with hypoxia-inducible factor 1 alpha (HIF-1α), the lack of which leads to oncological and cardiovascular diseases. In the presented study, N-MWCNTs were synthesized by catalytic chemical vapor deposition and irradiated with argon ions. Their chemical state, local structure, interfaces, Stone-Wales defects, and doping with nitrogen were analyzed by high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Using experimental data, supercells of functionalized N-MWCNTs with an oxygen content of 2.7, 4 and 6 at. % in carboxyl groups were built by quantum chemical methods. Our analysis by the self-consistent charge density functional tight-binding (SCC DFTB) method shows that a key role in the functionalization of CNTs with carboxyl groups belongs to Stone-Wales defects. The results of research in the decoration of CNTs with HIF-1α demonstrate the possibility of wave-diffusion drug delivery. The nature of hybridization and relaxation determines the mechanism of oxygen regulation with HIF-1α molecules, namely, by OH-(OH-C) and OH-(O=C) chemical bonds. The concentration dependence of drug release in the diffusion mode suggests that the best pattern for drug delivery is provided by the tube with a carboxylic oxygen content of 6 at. %.
Collapse
|
6
|
Image-guided drug delivery in nanosystem-based cancer therapies. Adv Drug Deliv Rev 2023; 192:114621. [PMID: 36402247 DOI: 10.1016/j.addr.2022.114621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The past decades have shown significant advancements in the development of solid tumor treatment. For instance, implementation of nanosystems for drug delivery has led to a reduction in side effects and improved delivery to the tumor region. However, clinical translation has faced challenges, as tumor drug levels are still considered to be inadequate. Interdisciplinary research has resulted in the development of more advanced drug delivery systems. These are coined "smart" due to the ability to be followed and actively manipulated in order to have better control over local drug release. Therefore, image-guided drug delivery can be a powerful strategy to improve drug activity at the target site. Being able to visualize the inflow of the administered smart nanosystem within the tumor gives the potential to determine the right moment to apply the facilitator to initiate drug release. Here we provide an overview of available nanosystems, imaging moieties, and imaging techniques. We discuss preclinical application of these smart drug delivery systems, the strength of image-guided drug delivery, and the future of personalized treatment.
Collapse
|
7
|
Pu Z, Wei Y, Sun Y, Wang Y, Zhu S. Carbon Nanotubes as Carriers in Drug Delivery for Non-Small Cell Lung Cancer, Mechanistic Analysis of Their Carcinogenic Potential, Safety Profiling and Identification of Biomarkers. Int J Nanomedicine 2022; 17:6157-6180. [PMID: 36523423 PMCID: PMC9744892 DOI: 10.2147/ijn.s384592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/23/2022] [Indexed: 04/04/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a global burden leading to millions of deaths worldwide every year. Nanomedicine refers to the use of materials at the nanoscale for drug delivery and subsequent therapeutic approaches in cancer. Carbon nanotubes (CNTs) are widely used as nanocarriers for therapeutic molecules such as plasmids, siRNAs, antisense agents, aptamers and molecules related to the immunotherapy for several cancers. They are usually functionalized and loaded with standard drug molecules to improve their therapeutic efficiency. Functionalization and drug loading possibly decrease the genotoxic and carcinogenic potential of CNTs. In addition, the targeted cytotoxic properties of the drug improve and undesired toxicity decreases after drug loading and/or conjugation with proteins, including antibodies. For intended drug delivery, a lysosomal pH of 5.5 is more suitable and effective for the slow and extended release of cytotoxic drugs than a physiological of pH 7.4. Remarkably, CNTs possess intrinsic antitumor properties and are usually internalized by endocytosis. After being internalized, several mechanisms are involved in the therapeutic and carcinogenic effects of CNTs. They are generally safe for therapy, and their toxicity profile remains dependent on their physicochemical properties. Moreover, the dose, route, duration of exposure, surface properties and degradative potential determine the toxicity outcomes of CNTs locally or systemically. In summary, the use of CNTs in drug delivery and NSCLC therapy, as well as their genotoxic and carcinogenic potential and the possible mechanisms, has been discussed in this review. The therapeutic index is generally high for NSCLC cells treated with drug-loaded CNTs; therefore, they are effective carriers in implementing targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Zhongjian Pu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Yujia Wei
- School of Medicine, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Department of General Practice, Suzhou Wuzhong Hospital of Traditional Chinese Medicine, Suzhou, 215101, People’s Republic of China
| | - Yuanpeng Sun
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Yajun Wang
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Shilin Zhu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| |
Collapse
|
8
|
Olive Leaf Extracts for a Green Synthesis of Silver-Functionalized Multi-Walled Carbon Nanotubes. J Funct Biomater 2022; 13:jfb13040224. [PMID: 36412865 PMCID: PMC9680358 DOI: 10.3390/jfb13040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Green biosynthesis, one of the most dependable and cost-effective methods for producing carbon nanotubes, was used to synthesize nonhazardous silver-functionalized multi-walled carbon nanotubes (SFMWCNTs) successfully. It has been shown that the water-soluble organic materials present in the olive oil plant play a vital role in converting silver ions into silver nanoparticles (Ag-NPs). Olive-leaf extracts contain medicinal properties and combining these extracts with Ag-NPs is often a viable option for enhancing drug delivery; thus, this possibility was employed for in vitro treating cancer cells as a proof of concept. In this study, the green technique for preparing SFMWCNTs composites using plant extracts was followed. This process yielded various compounds, the most important of which were Hydroxytyrosol, Tyrosol, and Oleuropein. Subsequently, a thin film was fabricated from the extract, resulting in a natural polymer. The obtained nanomaterials have an absorption peak of 419 nm in their UV-Vis. spectra. SEM and EDS were also used to investigate the SFMWCNT nanocomposites' morphology simultaneously. Moreover, the MTT assay was used to evaluate the ability of SFMWCNTs to suppress cancer cell viability on different cancer cell lines, MCF7 (human breast adenocarcinoma), HepG2 (human hepatocellular carcinoma), and SW620 (human colorectal cancer). Using varying doses of SFMWCNT resulted in the most significant cell viability inhibition, indicating the good sensitivity of SFMWCNTs for treating cancer cells. It was found that performing olive-leaf extraction at a low temperature in an ice bath leads to superior results, and the developed SFMWCNT nanocomposites could be potential treatment options for in vitro cancer cells.
Collapse
|
9
|
The Application of Carbon Nanomaterials in Sensing, Imaging, Drug Delivery and Therapy for Gynecologic Cancers: An Overview. Molecules 2022; 27:molecules27144465. [PMID: 35889338 PMCID: PMC9324069 DOI: 10.3390/molecules27144465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
Gynecologic cancers are one of the main health concerns of women throughout the world, and the early diagnosis and effective therapy of gynecologic cancers will be particularly important for the survival of female patients. As a current hotspot, carbon nanomaterials have attracted tremendous interest in tumor theranostics, and their application in gynecologic cancers has also been developed rapidly with great achievements in recent years. This Overview Article summarizes the latest progress in the application of diverse carbon nanomaterials (e.g., graphenes, carbon nanotubes, mesoporous carbon, carbon dots, etc.) and their derivatives in the sensing, imaging, drug delivery, and therapy of different gynecologic cancers. Important research contributions are highlighted in terms of the relationships among the fabrication strategies, architectural features, and action mechanisms for the diagnosis and therapy of gynecologic cancers. The current challenges and future strategies are discussed from the viewpoint of the real clinical application of carbon-based nanomedicines in gynecologic cancers. It is anticipated that this review will attract more attention toward the development and application of carbon nanomaterials for the theranostics of gynecologic cancers.
Collapse
|
10
|
Singh R, Kumar S. Cancer Targeting and Diagnosis: Recent Trends with Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2283. [PMID: 35808119 PMCID: PMC9268713 DOI: 10.3390/nano12132283] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Cancer belongs to a category of disorders characterized by uncontrolled cell development with the potential to invade other bodily organs, resulting in an estimated 10 million deaths globally in 2020. With advancements in nanotechnology-based systems, biomedical applications of nanomaterials are attracting increasing interest as prospective vehicles for targeted cancer therapy and enhancing treatment results. In this context, carbon nanotubes (CNTs) have recently garnered a great deal of interest in the field of cancer diagnosis and treatment due to various factors such as biocompatibility, thermodynamic properties, and varied functionalization. In the present review, we will discuss recent advancements regarding CNT contributions to cancer diagnosis and therapy. Various sensing strategies like electrochemical, colorimetric, plasmonic, and immunosensing are discussed in detail. In the next section, therapy techniques like photothermal therapy, photodynamic therapy, drug targeting, gene therapy, and immunotherapy are also explained in-depth. The toxicological aspect of CNTs for biomedical application will also be discussed in order to ensure the safe real-life and clinical use of CNTs.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|