1
|
Di R, Bansal KK, Rosenholm JM, Grohganz H, Rades T. Utilizing the allyl-terminated copolymer methoxy(poly(ethylene glycol))-block-poly(jasmine lactone) in the development of amorphous solid dispersions: A comparative study of functionalized and non-functionalized polymer. Int J Pharm 2024; 657:124175. [PMID: 38685442 DOI: 10.1016/j.ijpharm.2024.124175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Molecular interactions are crucial to stabilize amorphous drugs in amorphous solid dispersions (ASDs). Most polymers, however, have only a limited ability to form strong molecular interactions with drugs. Polymers tailored to fit the physicochemical properties of the drug molecule to be incorporated, for instance by allowing the incorporation of specific functional groups, would be highly sought-for in this regard. For this purpose, the novel allyl-terminated polymer methoxy(polyethylene glycol)-block-poly(jasmine lactone) (mPEG-b-PJL) has been synthesized and functionalized to potentially enhance specific drug-polymer interactions. This study investigated the use of mPEG-b-PJL in ASDs, using carvedilol (CAR), a weakly basic model drug. The findings revealed that the acidic functionalized form of the polymer (mPEG-b-PJL-COOH) indeed established stronger molecular interactions with CAR compared to its non-functionalized counterpart mPEG-b-PJL. Evaluations on polymer effectiveness in forming ASDs demonstrated that mPEG-b-PJL-COOH outperformed its non-functionalized counterpart in miscibility, drug loading ability, and stability, inferred from reduced molecular mobility. However, dissolution tests indicated that ASDs with mPEG-b-PJL-COOH did not significantly improve the dissolution behaviour compared to amorphous CAR alone, despite potential solubility enhancement through micelle formation. Overall, this study confirms the potential of functionalized polymers in ASD formulations, while the challenge of improving dissolution performance in these ASDs remains an area of further development.
Collapse
Affiliation(s)
- Rong Di
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Pharmacy, Copenhagen, Denmark.
| | - Kuldeep K Bansal
- Åbo Akademi University, Faculty of Science and Engineering, Pharmaceutical Sciences Laboratory, Turku, Finland.
| | - Jessica M Rosenholm
- Åbo Akademi University, Faculty of Science and Engineering, Pharmaceutical Sciences Laboratory, Turku, Finland.
| | - Holger Grohganz
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Pharmacy, Copenhagen, Denmark.
| | - Thomas Rades
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Pharmacy, Copenhagen, Denmark.
| |
Collapse
|
2
|
Štěpánková K, Ozaltin K, Sáha P, Vargun E, Domincová-Bergerová E, Vesel A, Mozetič M, Lehocký M. Carboxymethylated and Sulfated Furcellaran from Furcellaria lumbricalis and Its Immobilization on PLA Scaffolds. Polymers (Basel) 2024; 16:720. [PMID: 38475404 PMCID: PMC10934783 DOI: 10.3390/polym16050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
This study involved the creation of highly porous PLA scaffolds through the porogen/leaching method, utilizing polyethylene glycol as a porogen with a 75% mass ratio. The outcome achieved a highly interconnected porous structure with a thickness of 25 μm. To activate the scaffold's surface and improve its hydrophilicity, radiofrequency (RF) air plasma treatment was employed. Subsequently, furcellaran subjected to sulfation or carboxymethylation was deposited onto the RF plasma treated surfaces with the intention of improving bioactivity. Surface roughness and water wettability experienced enhancement following the surface modification. The incorporation of sulfate/carboxymethyl group (DS = 0.8; 0.3, respectively) is confirmed by elemental analysis and FT-IR. Successful functionalization of PLA scaffolds was validated by SEM and XPS analysis, showing changes in topography and increases in characteristic elements (N, S, Na) for sulfated (SF) and carboxymethylated (CMF). Cytocompatibility was evaluated by using mouse embryonic fibroblast cells (NIH/3T3).
Collapse
Affiliation(s)
- Kateřina Štěpánková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; (K.O.); (P.S.); (E.D.-B.)
| | - Kadir Ozaltin
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; (K.O.); (P.S.); (E.D.-B.)
| | - Petr Sáha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; (K.O.); (P.S.); (E.D.-B.)
| | - Elif Vargun
- Department of Chemistry, Mugla Sitki Kocman University, Kotekli, 48000 Mugla, Turkey;
| | - Eva Domincová-Bergerová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; (K.O.); (P.S.); (E.D.-B.)
| | - Alenka Vesel
- Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (A.V.); (M.M.)
| | - Miran Mozetič
- Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (A.V.); (M.M.)
| | - Marian Lehocký
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; (K.O.); (P.S.); (E.D.-B.)
| |
Collapse
|
3
|
Wang L, Wang Q, Rosqvist E, Smått JH, Yong Q, Lassila L, Peltonen J, Rosenau T, Toivakka M, Willför S, Eklund P, Xu C, Wang X. Template-Directed Polymerization of Binary Acrylate Monomers on Surface-Activated Lignin Nanoparticles in Toughening of Bio-Latex Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207085. [PMID: 36919307 DOI: 10.1002/smll.202207085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Indexed: 06/15/2023]
Abstract
Fabricating bio-latex colloids with core-shell nanostructure is an effective method for obtaining films with enhanced mechanical characteristics. Nano-sized lignin is rising as a class of sustainable nanomaterials that can be incorporated into latex colloids. Fundamental knowledge of the correlation between surface chemistry of lignin nanoparticles (LNPs) and integration efficiency in latex colloids and from it thermally processed latex films are scarce. Here, an approach to integrate self-assembled nanospheres of allylated lignin as the surface-activated cores in a seeded free-radical emulsion copolymerization of butyl acrylate and methyl methacrylate is proposed. The interfacial-modulating function on allylated LNPs regulates the emulsion polymerization and it successfully produces a multi-energy dissipative latex film structure containing a lignin-dominated core (16% dry weight basis). At an optimized allyl-terminated surface functionality of 1.04 mmol g-1 , the LNPs-integrated latex film exhibits extremely high toughness value above 57.7 MJ m-3 . With multiple morphological and microstructural characterizations, the well-ordered packing of latex colloids under the nanoconfinement of LNPs in the latex films is revealed. It is concluded that the surface chemistry metrics of colloidal cores in terms of the abundance of polymerization-modulating anchors and their accessibility have a delicate control over the structural evolution of core-shell latex colloids.
Collapse
Affiliation(s)
- Luyao Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Qingbo Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Emil Rosqvist
- Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Jan-Henrik Smått
- Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Qiwen Yong
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Lippo Lassila
- Turku Clinical Biomaterials Centre, University of Turku, Itäinen Pitkäkatu 4b, Turku, FI-20520, Finland
| | - Jouko Peltonen
- Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Thomas Rosenau
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU University), Konrad-Lorenz-Strasse 24, Tulln, AT-3430, Austria
| | - Martti Toivakka
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Stefan Willför
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Patrik Eklund
- Organic Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| | - Xiaoju Wang
- Laboratory of Natural Materials Technology, Åbo Akademi University, Henrikinkatu 2, Turku, FI-20500, Finland
| |
Collapse
|
4
|
Ali A, Bhadane R, Asl AA, Wilén CE, Salo-Ahen O, Rosenholm JM, Bansal KK. Functional block copolymer micelles based on poly (jasmine lactone) for improving the loading efficiency of weakly basic drugs. RSC Adv 2022; 12:26763-26775. [PMID: 36320859 PMCID: PMC9490767 DOI: 10.1039/d2ra03962a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
Functionalization of polymers is an attractive approach to introduce specific molecular forces that can enhance drug–polymer interaction to achieve higher drug loading when used as drug delivery systems. The novel amphiphilic block copolymer of methoxy poly(ethylene glycol) and poly(jasmine lactone) i.e., mPEG-b-PJL, derived from renewable jasmine lactone provides free allyl groups on the backbone thus, allowing flexible and facile post-synthesis functionalization. In this study, mPEG-b-PJL and its carboxyl functionalized polymer mPEG-b-PJL-COOH were utilised to explore the effect of ionic interactions on the drug–polymer behaviour. Various drugs with different pKa values were employed to prepare drug-loaded polymeric micelles (PMs) of mPEG-b-PJL, mPEG-b-PJL-COOH and Soluplus® (polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer) via a nanoprecipitation method. Electrostatic interactions between the COOH pendant on mPEG-b-PJL-COOH and the basic drugs were shown to influence the entrapment efficiency. Additionally, molecular dynamics (MD) simulations were employed to understand the polymer–drug interactions at the molecular level and how polymer functionalization influenced these interactions. The release kinetics of the anti-cancer drug sunitinib from mPEG-b-PJL and mPEG-b-PJL-COOH was assessed, and it demonstrated a sustainable drug release pattern, which depended on both pH and temperature. Furthermore, the cytotoxicity of sunitinib-loaded micelles on cancer cells was evaluated. The drug-loaded micelles exhibited dose-dependent toxicity. Also, haemolysis capacity of these polymers was investigated. In summary, polymer functionalization seems a promising approach to overcome challenges that hinder the application of polymer-based drug delivery systems such as low drug loading degree. Block copolymer micelles with a functional core have been synthesized and evaluated for their drug delivery capability. High drug loading was observed due to strong ionic interactions, while cytotoxicity of polymers was found to be low.![]()
Collapse
Affiliation(s)
- Aliaa Ali
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
| | - Rajendra Bhadane
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520 Turku, Finland
| | - Afshin Ansari Asl
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| | - Carl-Eric Wilén
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| | - Outi Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520 Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd floor), Tykistökatu 6A, 20520 Turku, Finland
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Aurum, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|