1
|
Jia R, Liu Y, Wu Y, Shen S, Cao K, Chen X, Wu Y, Shen W, Wang L, Sun B, Zhang Y, Xia H. Liposomes-in-Gel as the Docetaxel Delivery for the Effective Treatment of Psoriasis by Inhibiting the Proliferation of Blood Vessels. Gels 2025; 11:228. [PMID: 40277665 PMCID: PMC12027167 DOI: 10.3390/gels11040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Psoriasis is a chronic skin disease caused by the interaction of multiple factors that leads to the abnormal growth of stratum corneum cells and has been called an immortal cancer. Docetaxel has been trialed for the treatment of psoriasis due to its superior ability to induce apoptosis, but its insolubility and low bioavailability have hampered its development. Here, docetaxel (DTX)-loaded liposomes-in-gel (DTX-LP-G) as the transdermal delivery was investigated to the treatment of psoriasis via modulating the IL6-HIF-1α-VEGF axis. The results demonstrated that DTX-LP-G cumulatively released a much higher amount of drug into the skin than that from DTX-loaded liposomes (DTX-LPs) and DTX-loaded gel (DTX-G). DTX-LP-G was also the most efficient in scavenging hydrogen peroxide free radicals in vitro. In a mouse model of psoriasis, DTX-LP-G acted as a preliminary therapeutic agent for psoriasis in terms of apparent evaluation, splenomegaly, suppression of MDA content in skin tissue, and down-regulated the expression of IL6, HIF-1α, and VEGF to control the proliferation of vessels, except for a less pronounced effect on the stratum corneum. In addition, enrichment analysis can speculate that DTX also treated psoriasis by resisting the production of keratin-forming cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (R.J.); (Y.L.); (Y.W.); (S.S.); (K.C.); (X.C.); (Y.W.); (W.S.); (L.W.); (B.S.); (Y.Z.)
| |
Collapse
|
2
|
Alqaraleh M, Khleifat KM, Al-Samydai A, Al-Najjar BO, Saqallah FG, Al Qaisi YT, Alsarayreh AZ, Alqudah DA, Fararjeh AS. Bioactive potency of extracts from Stylissa carteri and Amphimedon chloros with silver nanoparticles against cancer cell lines and pathogenic bacteria. Biomed Rep 2025; 22:34. [PMID: 39777210 PMCID: PMC11704841 DOI: 10.3892/br.2024.1912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
Silver nanoparticles (AgNPs) are spherical particles with a number of specific and unique physical (such as surface plasmon resonance, high electrical conductivity and thermal stability) as well as chemical (including antimicrobial activity, catalytic efficiency and the ability to form conjugates with biomolecules) properties. These properties allow AgNPs to exhibit desired interactions with the biological system and make them prospective candidates for use in antibacterial and anticancer activities. AgNPs have a quenching capacity, which produces reactive oxygen species and disrupts cellular processes (such as reducing the function of the mitochondria, damaging the cell membrane, inhibiting DNA replication and altering protein synthesis). In addition, sponge extracts contain biologically active substances with therapeutic effects. Therefore, the concurrent use of these agents may present a potential for the development of novel antitumor and antimicrobial drugs. The present study investigated the cytotoxic effects of AgNPs combined with the extracts from sponge species, Stylissa carteri or Amphimedon chloros, against various cancer cell lines and pathogenic bacterial strains. The present study was novel as it provided a further understanding of the cytotoxicity and underlying mechanisms of AgNPs. Alterations in the properties, such as size, charge and polydispersity index, of the AgNPs were demonstrated after lyophilization. Scanning electron microscopy revealed submicron-sized particles. The cytotoxic potential of AgNPs across various cancer cell lines such as lung, colorectal, breast and pancreatic cancer cell lines, was demonstrated, especially when the AgNPs were combined with sponge extracts, which suggested a synergistic effect. Analysis using liquid chromatography-mass spectrometry revealed key chemical components in the extracts, and molecular docking simulations indicated potential inhibition interactions between a number of the extract components and the epidermal growth factor receptor and tyrosine kinase receptor A. Synergistic antibacterial effects against several bacterial species such as Staphylococcus xylosus, Klebsiella oxytoca, Enterobacter aerogenes, Micrococcus spp. and Escherichia coli, were observed when AgNPs were combined with sponge ethyl acetate extracts. The results of the present study suggested a potential therapeutic application of marine-derived compounds and nanotechnology in combating cancer and bacterial infections. Future research should further elucidate the mechanistic pathways and investigate the in vivo therapeutic efficacy.
Collapse
Affiliation(s)
- Moath Alqaraleh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Khaled M. Khleifat
- Department of Medical Laboratory Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | - Ali Al-Samydai
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman 11814, Jordan
| | - Belal O. Al-Najjar
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman 11814, Jordan
| | - Fadi G. Saqallah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Yaseen T. Al Qaisi
- Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | - Ahmad Z. Alsarayreh
- Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | - Dana A. Alqudah
- Department of Pharmaceutics and Technology, Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Abdulfattah S. Fararjeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan
| |
Collapse
|
3
|
Badran MM, Alsubaie A, Bekhit MMS, Alomrani AH, Almomen A. Layer-by-Layer Biopolymer-Coated Deformable Liposomes-In Situ Gel: A Hybrid Strategy for Enhanced Ocular Delivery of Itraconazole: In Vitro and In Vivo Appraisal. Gels 2024; 11:19. [PMID: 39851990 PMCID: PMC11765087 DOI: 10.3390/gels11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/16/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Itraconazole (ITZ) is a potent antifungal agent. Its oral administration is associated with systemic toxicity, and its efficacy in ocular formulations is limited. This study aims to enhance ITZ's ocular permeation and antifungal efficacy by loading it into deformable liposomes (DLs) based on Tween 80 (T) or Poloxamer 188 (P). Moreover, ITZ was loaded into biopolymer-coated DLs to augment its ocular availability. ITZ-loaded DLs were coated with hyaluronic acid (HA-DLs), chitosan (CS-DLs), or a layer-by-layer coating (CS/HA-DLs). These formulations were further laden into pH-sensitive in situ gels to provide a hybrid system to intensify their ocular adhesion properties. The prepared DLs were successfully prepared with vesicle sizes in nonorange (<200 nm). The zeta potential values of DLS were negative before coating and shifted to high negativity with HA coating and positivity with CS and CS/HA bilayer coating. These variations of zeta potential indicate successful CS and HA coatings. The optimized A high EE% was achieved with DLs-T: 89% (CS/HA-DLs-T), 86% (CS-DLs-T), 85% (HA-DLs-T), and 79% (HA-DLs-T). Therefore, DLs-T were incorporated into in situ gels, displaying optimal gelling capacity and viscosity. The release rate of ITZ from the coated DLs-laden in situ gels was slower than that observed with the uncoated DLs-gel. CS/HA-DLs-T laden-in situ gels showed the highest ex vivo transcorneal permeability and antifungal efficacy. These data suggest that the layer-by-layer-CS/HA-DLs-T presents a hopeful strategy for the ocular delivery of ITZ, offering a promising approach for managing ocular fungal infections.
Collapse
Affiliation(s)
- Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.M.S.B.); (A.H.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11495, Saudi Arabia
| | - Areej Alsubaie
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.M.S.B.); (A.H.A.)
| | - Mounir M. Salem Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.M.S.B.); (A.H.A.)
| | - Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.M.S.B.); (A.H.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11495, Saudi Arabia
| | - Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| |
Collapse
|
4
|
Vasileva LA, Gaynanova GA, Romanova EA, Petrov KA, Feng C, Zakharova LY, Sinyashin OG. Supramolecular approach to the design of nanocarriers for antidiabetic drugs: targeted patient-friendly therapy. RUSSIAN CHEMICAL REVIEWS 2024; 93:RCR5150. [DOI: 10.59761/rcr5150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Diabetes and its complications derived are among serious global health concerns that critically deteriorate the quality of life of patients and, in some cases, result in lethal outcome. Herein, general information on the pathogenesis, factors aggravating the course of the disease and drugs used for the treatment of two types of diabetes are briefly discussed. The aim of the review is to introduce supramolecular strategies that are currently being developed for the treatment of diabetes mellitus and that present a very effective alternative to chemical synthesis, allowing the fabrication of nanocontainers with switchable characteristics that meet the criteria of green chemistry. Particular attention is paid to organic (amphiphilic and polymeric) formulations, including those of natural origin, due to their biocompatibility, low toxicity, and bioavailability. The advantages and limitations of different nanosystems are discussed, with emphasis on their adaptivity to noninvasive administration routes.<br>The bibliography includes 378 references.
Collapse
Affiliation(s)
- L. A. Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - G. A. Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - E. A. Romanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - K. A. Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Ch. Feng
- Shanghai Jiao Tong University, Shanghai, China
| | - L. Ya. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - O. G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
5
|
Kumar A, Mazumder R, Rani A, Pandey P, Khurana N. Novel Approaches for the Management of Type 2 Diabetes Mellitus: An Update. Curr Diabetes Rev 2024; 20:e051023221768. [PMID: 37888820 DOI: 10.2174/0115733998261903230921102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 10/28/2023]
Abstract
Diabetes mellitus is an irreversible, chronic metabolic disorder indicated by hyperglycemia. It is now considered a worldwide pandemic. T2DM, a spectrum of diseases initially caused by tissue insulin resistance and slowly developing to a state characterized by absolute loss of secretory action of the β cells of the pancreas, is thought to be caused by reduced insulin secretion, resistance to tissue activities of insulin, or a combination of both. Insulin secretagogues, biguanides, insulin sensitizers, alpha-glucosidase inhibitors, incretin mimetics, amylin antagonists, and sodium-glucose co-transporter-2 (SGLT2) inhibitors are the main medications used to treat T2DM. Several of these medication's traditional dosage forms have some disadvantages, including frequent dosing, a brief half-life, and limited absorption. Hence, attempts have been made to develop new drug delivery systems for oral antidiabetics to ameliorate the difficulties associated with conventional dosage forms. In comparison to traditional treatments, this review examines the utilization of various innovative therapies (such as microparticles, nanoparticles, liposomes, niosomes, phytosomes, and transdermal drug delivery systems) to improve the distribution of various oral hypoglycemic medications. In this review, we have also discussed some new promising candidates that have been approved recently by the US Food and Drug Administration for the treatment of T2DM, like semaglutide, tirzepatide, and ertugliflozin. They are used as a single therapy and also as combination therapy with drugs like metformin and sitagliptin.
Collapse
Affiliation(s)
- Abhishek Kumar
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Anjna Rani
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP 201306, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
7
|
Wang S, Chen Y, Guo J, Huang Q. Liposomes for Tumor Targeted Therapy: A Review. Int J Mol Sci 2023; 24:ijms24032643. [PMID: 36768966 PMCID: PMC9916501 DOI: 10.3390/ijms24032643] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Liposomes, the most widely studied nano-drug carriers in drug delivery, are sphere-shaped vesicles consisting of one or more phospholipid bilayers. Compared with traditional drug delivery systems, liposomes exhibit prominent properties that include targeted delivery, high biocompatibility, biodegradability, easy functionalization, low toxicity, improvements in the sustained release of the drug it carries and improved therapeutic indices. In the wake of the rapid development of nanotechnology, the studies of liposome composition have become increasingly extensive. The molecular diversity of liposome composition, which includes long-circulating PEGylated liposomes, ligand-functionalized liposomes, stimuli-responsive liposomes, and advanced cell membrane-coated biomimetic nanocarriers, endows their drug delivery with unique physiological functions. This review describes the composition, types and preparation methods of liposomes, and discusses their targeting strategies in cancer therapy.
Collapse
Affiliation(s)
- Shile Wang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
| | - Yanyu Chen
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
| | - Jiancheng Guo
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
| | - Qinqin Huang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jingba Road No. 2, Zhengzhou 450014, China
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou 450052, China
- Correspondence:
| |
Collapse
|
8
|
El-Dakroury WA, Zewail MB, Amin MM. Design, optimization, and in-vivo performance of glipizide-loaded O-carboxymethyl chitosan nanoparticles in insulin resistant/type 2 diabetic rat model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|