1
|
Solarczyk P, Slósarz J, Gołębiewski M, Natalello A, Musati M, Luciano G, Priolo A, Puppel K. The Influence of Crossbreeding on the Composition of Protein and Fat Fractions in Milk: A Comparison Between Purebred Polish Holstein Friesian and Polish Holstein Friesian × Swedish Red Cows. Nutrients 2024; 16:3634. [PMID: 39519466 PMCID: PMC11547650 DOI: 10.3390/nu16213634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES In this study, the differences in protein and fat bioactive components between the milk from purebred Polish Holstein Friesian (PHF) cows and PHF cows crossbred with Swedish Red (SRB) were investigated. The objective was to assess the impact of genetic variation on the nutritional quality of their milk. METHODS This study was conducted at the Warsaw University of Life Sciences' (WULS) experimental dairy farm in Warsaw, Poland, and involved 60 primiparous cows divided into two groups: 30 PHF×SRB crossbred cows and 30 purebred PHF cows. All cows were housed in a free-stall system with an average lactation yield exceeding 10,000 kg/lactation. The milk composition analyses included total protein, casein, whey protein, fatty acid profiles, and vitamin content. RESULTS Milk from the PHF×SRB hybrids showed a significantly greater total protein content (3.53%) compared to that from the purebred PHF cows (3.28%). The casein content was higher in the hybrids' milk (2.90%) than the purebreds' milk (2.78%), while the whey protein levels were lower in the purebred milk (0.50%) than in the hybrid milk (0.63%). The hybrids exhibited higher concentrations of certain saturated fatty acids in their milk, while the purebreds' milk contained greater amounts of beneficial unsaturated fatty acids and fat-soluble vitamins-E, D, and K. CONCLUSIONS These results indicate that genetic selection through crossbreeding can enhance the nutritional quality of milk. The differences observed in protein, fatty-acid, and vitamin content underscore the role of the genotype in milk composition, suggesting that breeding strategies can optimize dairy products' health benefits.
Collapse
Affiliation(s)
- Paweł Solarczyk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Jan Slósarz
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Marcin Gołębiewski
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Antonio Natalello
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Martino Musati
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Giuseppe Luciano
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Alessandro Priolo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Kamila Puppel
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
2
|
Qureshi S, Alavi SE, Mohammed Y. Microsponges: Development, Characterization, and Key Physicochemical Properties. Assay Drug Dev Technol 2024; 22:229-245. [PMID: 38661260 DOI: 10.1089/adt.2023.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Microsponges are promising drug delivery carriers with versatile characteristics and controlled release properties for the delivery of a wide range of drugs. The microsponges will provide an optimized therapeutic effect, when delivered at the site of action without rupturing, then releasing the cargo at the predetermined time and area. The ability of the microsponges to effectively deliver the drug in a controlled manner depends on the material composition. This comprehensive review entails knowledge on the design parameters of an optimized microsponge drug delivery system and the controlled release properties of microsponges that reduces the side effects of drugs. Furthermore, the review delves into the fabrication techniques of microsponges, the mechanism of drug release from the microsponges, and the regulatory requirements of the U.S. Food and Drug Administration (FDA) for the successful marketing of microsponge formulation. The review also examines the patented formulations of microsponges. The prospects of these sophisticated drug delivery systems for improved clinical outcomes are highlighted.
Collapse
Affiliation(s)
- Sundus Qureshi
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Alharthi S, Alavi SZ, Nisa MU, Koohi M, Raza A, Ebrahimi Shahmabadi H, Alavi SE. Developing Engineered Nano-Immunopotentiators for the Stimulation of Dendritic Cells and Inhibition and Prevention of Melanoma. Pharm Res 2024; 41:1163-1181. [PMID: 38839718 DOI: 10.1007/s11095-024-03722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE This study aims to utilize PEGylated poly (lactic-co-glycolic acid) (PLGA) nanoparticles as a delivery system for simultaneous administration of the BRAFV600E peptide, a tumor-specific antigen, and imiquimod (IMQ). The objective is to stimulate dendritic cell (DC) maturation, activate macrophages, and facilitate antigen presentation in C57BL6 mice. METHODS PEG-PLGA-IMQ-BRAFV600E nanoparticles were synthesized using a PLGA-PEG-PLGA tri-block copolymer, BRAFV600E, and IMQ. Characterization included size measurement and drug release profiling. Efficacy was assessed in inhibiting BPD6 melanoma cell growth and activating immature bone marrow DCs, T cells, macrophages, and splenocyte cells through MTT and ELISA assays. In vivo, therapeutic and immunogenic effects potential was evaluated, comparing it to IMQ + BRAFV600E and PLGA-IMQ-BRAFV600E nanoparticles in inhibiting subcutaneous BPD6 tumor growth. RESULTS The results highlight the successful synthesis of PEG-PLGA-IMQ-BRAFV600E nanoparticles (203 ± 11.1 nm), releasing 73.4% and 63.2% of IMQ and BARFV600E, respectively, within the initial 48 h. In vitro, these nanoparticles demonstrated a 1.3-fold increase in potency against BPD6 cells, achieving ~ 2.8-fold enhanced cytotoxicity compared to PLGA-IMQ-BRAFV600E. Moreover, PEG-PLGA-IMQ-BRAFV600E exhibited a 1.3-fold increase in potency for enhancing IMQ cytotoxic effects and a 1.1- to ~ 2.4-fold increase in activating DCs, T cells, macrophages, and splenocyte cells compared to IMQ-BRAFV600E and PLGA-IMQ-BRAFV600E. In vivo, PEG-PLGA-IMQ-BRAFV600E displayed a 1.3- to 7.5-fold increase in potency for inhibiting subcutaneous BPD6 tumor growth compared to the other formulations. CONCLUSIONS The findings suggest that PEG-PLGA nanoparticles effectively promote DC maturation, T cell activation, and potentially macrophage activation. The study highlights the promising role of this nanocomposite in vaccine development.
Collapse
Affiliation(s)
- Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi, 11961, Saudi Arabia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran
| | - Mehr Un Nisa
- Nishtar Medical University and Hospital, Multan, 60000, Pakistan
| | - Maedeh Koohi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran
| | - Aun Raza
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
| | - Seyed Ebrahim Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
| |
Collapse
|
4
|
Alavi SE, Alharthi S, Alavi SF, Alavi SZ, Zahra GE, Raza A, Ebrahimi Shahmabadi H. Microfluidics for personalized drug delivery. Drug Discov Today 2024; 29:103936. [PMID: 38428803 DOI: 10.1016/j.drudis.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
This review highlights the transformative impact of microfluidic technology on personalized drug delivery. Microfluidics addresses issues in traditional drug synthesis, providing precise control and scalability in nanoparticle fabrication, and microfluidic platforms show high potential for versatility, offering patient-specific dosing and real-time monitoring capabilities, all integrated into wearable technology. Covalent conjugation of antibodies to nanoparticles improves bioactivity, driving innovations in drug targeting. The integration of microfluidics with sensor technologies and artificial intelligence facilitates real-time feedback and autonomous adaptation in drug delivery systems. Key challenges, such as droplet polydispersity and fluidic handling, along with future directions focusing on scalability and reliability, are essential considerations in advancing microfluidics for personalized drug delivery.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia.
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Seyedeh Fatemeh Alavi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, PR China
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Gull E Zahra
- Government College University Faisalabad, Faisalabad, Pakistan
| | - Aun Raza
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran.
| |
Collapse
|
5
|
Alavi SE, Alavi SZ, Nisa MU, Koohi M, Raza A, Ebrahimi Shahmabadi H. Revolutionizing Wound Healing: Exploring Scarless Solutions through Drug Delivery Innovations. Mol Pharm 2024; 21:1056-1076. [PMID: 38288723 DOI: 10.1021/acs.molpharmaceut.3c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Human skin is the largest organ and outermost surface of the human body, and due to the continuous exposure to various challenges, it is prone to develop injuries, customarily known as wounds. Although various tissue engineering strategies and bioactive wound matrices have been employed to speed up wound healing, scarring remains a significant challenge. The wound environment is harsh due to the presence of degradative enzymes and elevated pH levels, and the physiological processes involved in tissue regeneration operate on distinct time scales. Therefore, there is a need for effective drug delivery systems (DDSs) to address these issues. The objective of this review is to provide a comprehensive exposition of the mechanisms underlying the skin healing process, the factors and materials used in engineering DDSs, and the different DDSs used in wound care. Furthermore, this investigation will delve into the examination of emergent technologies and potential avenues for enhancing the efficacy of wound care devices.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Mehr Un Nisa
- Nishtar Medical University and Hospital, Multan 60000, Pakistan
| | - Maedeh Koohi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 202013, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| |
Collapse
|
6
|
Alavi SE, Alavi SZ, Gholami M, Sharma A, Sharma LA, Ebrahimi Shahmabadi H. Biocomposite-based strategies for dental bone regeneration. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:554-568. [PMID: 37612166 DOI: 10.1016/j.oooo.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Because of the anatomical complexity of the oral and maxillofacial sites, repairing bone defects in these regions is very difficult. This review article aims to consider the application of biocomposites-based strategies for dental bone regeneration. STUDY DESIGN Research papers related to the topic, published over the last 20 years, were selected using the Web of Science, Pubmed, Scopus, and Google Scholar databases. RESULTS The strategies of monophasic, biphasic/multiphasic scaffolds, and biopolymer-based nanocomposite scaffolds containing nanomaterials compared with traditional methods used for bone regeneration, such as autografts, allografts, xenografts, and alloplasts are found to be superior because of their ability to overcome the issues (e.g., limited bone sources, pain, immune responses, high cost) related to the applications of the traditional methods. CONCLUSIONS In addition, additive manufacturing technologies were found to be highly advantageous for improving the efficacy of biocomposite scaffolds for treating dental bone defects.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Ajay Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Lavanya A Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia.
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
7
|
Alavi SE, Panah N, Page F, Gholami M, Dastfal A, Sharma LA, Ebrahimi Shahmabadi H. Hydrogel-based therapeutic coatings for dental implants. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Alavi SE, Raza A, Koohi Moftakhari Esfahani M, Akbarzadeh A, Abdollahi SH, Ebrahimi Shahmabadi H. Carboplatin Niosomal Nanoplatform for Potentiated Chemotherapy. J Pharm Sci 2022; 111:3029-3037. [PMID: 35675875 DOI: 10.1016/j.xphs.2022.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
This study aimed to characterize a stable nano-niosome formulation, which could reduce the adverse effects of carboplatin (CB) and improve its therapeutic efficacy in the treatment of breast cancer. For this purpose, CB-loaded polyethylene glycol (PEG)ylated niosome nanoparticles (PEG-NS-CB) were synthesized using the reverse-phase evaporation method. PEG-NS-CB (226.0 ± 10.6 nm) could release CB in a controlled manner and, compared to CB and CB-loaded non-PEGylated niosome (NS-CB), caused higher cytotoxicity effects against mouse breast cancer 4T1 cells (IC50: 83.4, 26.6, and 22.5 µM for CB, NS-CB, and PEG-NS-CB, respectively). Also, PEG-NS-CB demonstrated higher stability, in which its profile of drug release, cytotoxicity, and LE% did not change significantly three months after preparation compared to those at the production time. In addition, the in vivo results demonstrated that PEG-NS-CB caused higher therapeutic (the number of alive mice: 12, 15, and 17 out of 20 in CB, NS-CB, and PEG-NS-CB receiver groups, respectively) and less toxicity effects (weight loss of 17, 12.5, and 10% in CB, NS-CB, and PEG-NS-CB receiver groups, respectively), compared to NS-CB and CB in breast cancer-bearing mice. Overall, the results of this study suggest that PEG-NS-CB could be a promising formulation for the treatment of breast cancer.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Maedeh Koohi Moftakhari Esfahani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Azim Akbarzadeh
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Hossein Abdollahi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
9
|
Impact of PEGylated Liposomal Doxorubicin and Carboplatin Combination on Glioblastoma. Pharmaceutics 2022; 14:pharmaceutics14102183. [PMID: 36297618 PMCID: PMC9609487 DOI: 10.3390/pharmaceutics14102183] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma is an incurable cancer with a 5-year survival chance of less than 5%. Chemotherapy is a therapeutic approach to treating the disease; however, due to the presence of the blood–brain barrier (BBB), the probability of success is low. To overcome this issue, nanoparticles are promising carriers for crossing the BBB and delivering drugs to the tumor. In this study, the anticancer efficacy of doxorubicin (DOX) and carboplatin (CB) loaded into polyethylene glycol (PEG)ylated liposome nanoparticles (PEG-Lip) and in treating brain cancer was evaluated in vitro and in vivo. The results demonstrated that PEG-Lip-DOX/CB with a size of 212 ± 10 nm was synthesized that could release the loaded drugs in a controlled manner, from which 56.3% of the loaded drugs were released after 52 h. In addition, PEG-Lip-DOX/CB could significantly increase the cytotoxicity effects of the drugs against rat glioma C6 cells (IC50: 8.7 and 12.9 µM for the drugs-loaded nanoparticles and DOX + CB, respectively). The in vivo results also demonstrated that PEGylated liposomes, compared to non-PEGylated liposomes (Lip) and DOX + CB, were more efficient in increasing the therapeutic effects and decreasing the side effects of the drugs, in which the survival times of the glioblastoma-bearing rats were 39, 35, and 30 days in the PEG-Lip-DOX/CB, Lip-DOX/CB, and DOX + CB receiver groups, respectively. In addition, the weight loss was found to be 8.7, 10.5, and 13%, respectively, in the groups. The results of the toxicity evaluation were also confirmed by histopathological studies. Overall, the results of this study demonstrated that the encapsulation of DOX and CB into PEG-Lip is a promising approach to improving the properties of DOX and CB in terms of their therapeutic effects and drug side effects for the treatment of glioblastoma.
Collapse
|
10
|
A PEGylated Nanostructured Lipid Carrier for Enhanced Oral Delivery of Antibiotics. Pharmaceutics 2022; 14:pharmaceutics14081668. [PMID: 36015294 PMCID: PMC9415149 DOI: 10.3390/pharmaceutics14081668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance is a major concern for public health throughout the world that severely restricts available treatments. In this context, methicillin-resistant Staphylococcus aureus (MRSA) is responsible for a high percentage of S. aureus infections and mortality. To overcome this challenge, nanoparticles are appropriate tools as drug carriers to improve the therapeutic efficacy and decrease the toxicity of drugs. In this study, a polyethylene glycol (PEG)ylated nanostructured lipid carrier (PEG-NLC) was synthesized to improve the oral delivery of trimethoprim/sulfamethoxazole (TMP/SMZ) for the treatment of MRSA skin infection in vitro and in vivo. The nanoformulation (PEG-TMP/SMZ-NLC) was synthesized with size and drug encapsulation efficiencies of 187 ± 9 nm and 93.3%, respectively, which could release the drugs in a controlled manner at intestinal pH. PEG-TMP/SMZ-NLC was found efficient in decreasing the drugs’ toxicity by 2.4-fold in vitro. In addition, the intestinal permeability of TMP/SMZ was enhanced by 54%, and the antibacterial effects of the drugs were enhanced by 8-fold in vitro. The results of the stability study demonstrated that PEG-TMP/SMZ-NLC was stable for three months. In addition, the results demonstrated that PEG-TMP/SMZ-NLC after oral administration could decrease the drugs’ side-effects such as renal and hepatic toxicity by ~5-fold in MRSA skin infection in Balb/c mice, while it could improve the antibacterial effects of TMP/SMZ by 3 orders of magnitude. Overall, the results of this study suggest that the application of PEGylated NLC nanoparticles is a promising approach to improving the oral delivery of TMP/SMZ for the treatment of MRSA skin infection.
Collapse
|
11
|
Koohi Moftakhari Esfahani M, Alavi SE, Cabot PJ, Islam N, Izake EL. Application of Mesoporous Silica Nanoparticles in Cancer Therapy and Delivery of Repurposed Anthelmintics for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081579. [PMID: 36015204 PMCID: PMC9415106 DOI: 10.3390/pharmaceutics14081579] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
This review focuses on the biomedical application of mesoporous silica nanoparticles (MSNs), mainly focusing on the therapeutic application of MSNs for cancer treatment and specifically on overcoming the challenges of currently available anthelmintics (e.g., low water solubility) as repurposed drugs for cancer treatment. MSNs, due to their promising features, such as tunable pore size and volume, ability to control the drug release, and ability to convert the crystalline state of drugs to an amorphous state, are appropriate carriers for drug delivery with the improved solubility of hydrophobic drugs. The biomedical applications of MSNs can be further improved by the development of MSN-based multimodal anticancer therapeutics (e.g., photosensitizer-, photothermal-, and chemotherapeutics-modified MSNs) and chemical modifications, such as poly ethyleneglycol (PEG)ylation. In this review, various applications of MSNs (photodynamic and sonodynamic therapies, chemotherapy, radiation therapy, gene therapy, immunotherapy) and, in particular, as the carrier of anthelmintics for cancer therapy have been discussed. Additionally, the issues related to the safety of these nanoparticles have been deeply discussed. According to the findings of this literature review, the applications of MSN nanosystems for cancer therapy are a promising approach to improving the efficacy of the diagnostic and chemotherapeutic agents. Moreover, the MSN systems seem to be an efficient strategy to further help to decrease treatment costs by reducing the drug dose.
Collapse
Affiliation(s)
- Maedeh Koohi Moftakhari Esfahani
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia;
| | - Nazrul Islam
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Emad L. Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Correspondence: ; Tel.: +61-7-3138-2501
| |
Collapse
|