1
|
Sun G, Wang L, Dong Z, Zhang Y, Yang Y, Hu M, Fang H. The Current Status, Hotspots, and Development Trends of Nanoemulsions: A Comprehensive Bibliometric Review. Int J Nanomedicine 2025; 20:2937-2968. [PMID: 40093547 PMCID: PMC11910037 DOI: 10.2147/ijn.s502490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Nanoemulsions, which are characterized by their nanometer-scale droplets, have gained significant attention in different fields, such as medicine, food, cosmetics, and agriculture, because of their unique properties. With an increasing number of countries engaging in research on nanoemulsions, interest in their properties, preparation methods, and applications has increased. Hence, tracing the relevant research on nanoemulsions published in the past ten years on a global scale, by conducting data mining and visualization analysis on a sufficiently large text dataset through bibliometrics, sorting out and summarizing certain indicators, the development history, research status and research hotspots in the field of nanoemulsions can be clearly revealed, providing reference value and significance for subsequent research. This bibliometric review examines the research landscape of nanoemulsions from 2013-2023 via the SCI-E and SSCI databases, providing insights into the current status, hotspots, and future trends of this field. To offer a comprehensive overview, this analysis includes publication counts, author keywords, institutional contributions, research areas, prolific authors, highly cited papers and hot research papers. The findings reveal that China led in nanoemulsions research, followed by USA, India, and Brazil, with the University of Massachusetts emerging as a key player with the highest average number of citations per article (ACPP) and h-index. Food Chemistry, Pharmaceutics, and the Journal of Drug Delivery Science and Technology are among the top journals publishing in this area. Chemistry, pharmacology, and pharmacy emerged as the primary research domains, with McClements DJ as the most prolific and influential author. In keyword analysis, essential oil nanoemulsions are currently the main preparation direction, and various characteristics of nanoemulsions, such as their bioavailability, stability, biocompatibility, and antioxidant and antibacterial properties, have also been studied extensively. Research hotspots are focused mostly on the development of new applications and technologies for nanoemulsions.
Collapse
Affiliation(s)
- Guojun Sun
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Liying Wang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zuojun Dong
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yanxiao Zhang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yan Yang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Miao Hu
- Zhejiang Guangsha Vocational and Technical University of Construction, Jinhua, People's Republic of China
| | - Hui Fang
- Library, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Hamdy SA, Prabha R, Singh DP, Farag MA. Cardamom seed bioactives: A review of agronomic factors, preparation, extraction and formulation methods based on emerging technologies to maximize spice aroma economic value and applications. Food Chem 2025; 462:141009. [PMID: 39213971 DOI: 10.1016/j.foodchem.2024.141009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Cardamom seed (Elettaria cardamomum (L.)) is a well-appreciated spice in food and pharmaceutical industries owing to its unique rich flavor dominated by oxygenated monoterpenoids, α-terpinyl acetate and 1,8-cineole, to which most of the quality of cardamom essential oil (CEO) is attributed. CEO output is greatly influenced by different agronomic factors, processing, and EO extraction methods. In that context, the goal of this study is to provide an overarching review regarding emerged technologies along with their optimization parameters to achieve optimal oil yield with the best flavor quality. Furthermore, the recent approaches employed in CEO stabilization were highlighted alongside their pharmaceutical and food applications. Moreover, the different aspects of superlative CEO production including agricultural aspects, climatic requirements, and processing methods were also explained.
Collapse
Affiliation(s)
- Sherif A Hamdy
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st. P.B., 11562 Cairo, Egypt.
| | - Ratna Prabha
- Agricultural Knowledge Management Unit, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | | | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st. P.B., 11562 Cairo, Egypt.
| |
Collapse
|
3
|
Weerapol Y, Jarerattanachat V, Limmatvapirat S, Limmatvapirat C, Manmuan S, Tubtimsri S. Unveiling the Molecular Dynamics, Anticancer Activity, and Stability of Spearmint Oil Nanoemulsions with Triglycerides. Mol Pharm 2024; 21:3151-3162. [PMID: 38804164 PMCID: PMC11220747 DOI: 10.1021/acs.molpharmaceut.3c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Although spearmint oil (SMO) has various pharmacological properties, especially for cancer treatment, its low water solubility results in poor bioavailability. This limits its application as a medicine. One possible solution is to the use of SMO in the form of nanoemulsion, which has already been shown to have anticancer effects. However, the mechanism of SMO nanoemulsion formation remains unclear. The objective of this study was to use molecular dynamics (MD) for clarifying the formation of SMO nanoemulsion with triglycerides (trilaurin, tripalmitin, and triolein) and Cremophor RH40 (PCO40). Nanoemulsions with different SMO:triglyceride ratios and triglyceride types were prepared and analyzed for anticancer activity, droplet size, droplet morphology, and stability. Despite switching the type of carrier oil, SMO nanoemulsions retained strong anticancer effects. A ratio of 80SMO:20triglycerides produced the smallest droplets (<100 nm) and exhibited excellent physical stability after a temperature cycling test. MD simulations showed that polyoxyethylenes of PCO40 are located at the water interface, stabilizing the emulsion structure in an egglike layer. Droplet size correlated with triglyceride concentration, which was consistent with the experimental findings. Decreasing triglyceride content, except for the 90SMO:10triglyceride ratio, led to a decrease in droplet sizes. Hydrogen bond analysis identified interactions between triglyceride-PCO40 and carvone-PCO40. Geometry analysis showed PCO40 had an "L-like" shape, which maximizes the hydrophilic interfaces. These findings highlight the value of MD simulations in understanding the formation mechanism of SMO and triglyceride nanoemulsions. In addition, it might also be beneficial to use MD simulations before the experiment to select the potential composition for nanoemulsions, especially essential oil nanoemulsions.
Collapse
Affiliation(s)
- Yotsanan Weerapol
- Faculty
of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| | - Viwan Jarerattanachat
- NSTDA
Supercomputer Center, National Electronics and Computer Technology
Center, National Science and Technology
Development Agency, Khlong
Luang, Pathumthani 12120, Thailand
| | - Sontaya Limmatvapirat
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon
Pathom 73000, Thailand
| | - Chutima Limmatvapirat
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon
Pathom 73000, Thailand
| | - Suwisit Manmuan
- Faculty
of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| | - Sukannika Tubtimsri
- Faculty
of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
4
|
Rajasekaran SP, Huynh B, Fugolin APP. Tailoring Microemulsification Techniques for the Encapsulation of Diverse Cargo: A Systematic Analysis of Poly (Urea-Formaldehyde) Microcapsules. J Funct Biomater 2024; 15:117. [PMID: 38786629 PMCID: PMC11122521 DOI: 10.3390/jfb15050117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Cargo encapsulation through emulsion-based methods has been pondered over the years. Although several microemulsification techniques have been employed for the microcapsule's synthesis, there are still no clear guidelines regarding the suitability of one technique over the others or the impacts on the morphological and physicochemical stability of the final particles. Therefore, in this systematic study, we investigated the influence of synthesis parameters on the fabrication of emulsion-based microcapsules concerning morphological and physicochemical properties. Using poly(urea-formaldehyde) (PUF) microcapsules as a model system, and after determining the optimal core/shell ratio, we tested three different microemulsification techniques (magnetic stirring, ultrasonication, and mechanical stirring) and two different cargo types (100% TEGDMA (Triethylene glycol dimethacrylate) and 80% TEGDMA + 20% DMAM (N,N-Dimethylacrylamide)). The resulting microcapsules were characterized via optical and scanning electron microscopies, followed by size distribution analysis. The encapsulation efficiency was obtained through the extraction method, and the percentage reaction yield was calculated. Physicochemical properties were assessed by incubating the microcapsules under different osmotic pressures for 1 day and 1, 2, or 4 weeks. The data were analyzed statistically with one-way ANOVA and Tukey's tests (α = 0.05). Overall, the mechanical stirring resulted in the most homogeneous and stable microcapsules, with an increased reaction yield from 100% to 50% in comparison with ultrasonication and magnetic methods, respectively. The average microcapsule diameter ranged from 5 to 450 µm, with the smallest ones in the ultrasonication and the largest ones in the magnetic stirring groups. The water affinities of the encapsulated cargo influenced the microcapsule formation and stability, with the incorporation of DMAM leading to more homogeneous and stable microcapsules. Environmental osmotic pressure led to cargo loss or the selective swelling of the shells. In summary, this systematic investigation provides insights and highlights commonly overlooked factors that can influence microcapsule fabrication and guide the choice based on a diligent analysis of therapeutic niche requirements.
Collapse
Affiliation(s)
| | | | - Ana Paula P. Fugolin
- Division of Biomaterials & Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA; (S.P.R.); (B.H.)
| |
Collapse
|
5
|
Weerapol Y, Manmuan S, Chuenbarn T, Limmatvapirat S, Tubtimsri S. Nanoemulsion-Based Orodispersible Film Formulation of Guava Leaf Oil for Inhibition of Oral Cancer Cells. Pharmaceutics 2023; 15:2631. [PMID: 38004609 PMCID: PMC10675713 DOI: 10.3390/pharmaceutics15112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Among natural sources, guava leaf oil (GLO) has emerged as a potential anticancer agent. However, its limited water solubility poses a significant challenge for its use. Oil-in-water nanoemulsions are used to address the limitation of water solubility of GLO prior to its incorporation into orodipersible films. Nanoemulsions containing GLO:virgin coconut oil (VCO) at a ratio of 50:50 to 70:30 presented a small droplet size of approximately 50 nm and a relatively low zeta potential. GLO:VCO at a ratio of 70:30 was selected for incorporation into sodium alginate film at various concentrations ranging from 1% to 30% w/w. Tensile strength and elongation at break relied on the concentration of nanoemulsions as well as the internal structure of films. Fourier transform infrared spectroscopy revealed that GLO was compatible with sodium alginate. Film containing 2% w/w of nanoemulsions (2G_ODF) exhibited effective in vitro antioral cancer activity, with an IC50 of 62.49 ± 6.22 mg/mL; furthermore, its anticancer activity showed no significant difference after storage at 25 °C for 1 year. Moreover, 2G_ODF at IC60 arrested colony formation and cell invasion. There is also evidence that cell death occurred via apoptosis, as indicated by nuclear fragmentation and positive Annexin-V staining. These findings highlight the potential of orodispersible films containing GLO nanoemulsions as a prospective oral anticancer agent.
Collapse
Affiliation(s)
- Yotsanan Weerapol
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand; (Y.W.); (S.M.); (T.C.)
| | - Suwisit Manmuan
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand; (Y.W.); (S.M.); (T.C.)
| | - Tiraniti Chuenbarn
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand; (Y.W.); (S.M.); (T.C.)
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Sukannika Tubtimsri
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand; (Y.W.); (S.M.); (T.C.)
| |
Collapse
|
6
|
Khamwut A, Klomkliew P, Jumpathong W, Kaewsapsak P, Chanchaem P, Sivapornnukul P, Chantanakat K, T-Thienprasert NP, Payungporn S. In vitro evaluation of the anti‑breast cancer properties and gene expression profiles of Thai traditional formulary medicine extracts. Biomed Rep 2023; 19:70. [PMID: 37719681 PMCID: PMC10502604 DOI: 10.3892/br.2023.1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Breast cancer is a leading cause of cancer-related deaths worldwide. Moreover, standard treatments are limited, so new alternative treatments are required. Thai traditional formulary medicine (TTFM) utilizes certain herbs to treat different diseases due to their dominant properties including anti-fungal, anti-bacterial, antigenotoxic, anti-inflammatory and anti-cancer actions. However, very little is known about the anti-cancer properties of TTFM against breast cancer cells and the underlying molecular mechanism has not been elucidated. Therefore, the present study, evaluated the metabolite profiles of TTFM extracts, the anti-cancer activities of TTFM extracts, their effects on the apoptosis pathway and associated gene expression profiles. Liquid chromatography with tandem mass spectroscopy analysis identified a total of 226 compounds within the TTFM extracts. Several of these compounds have been previously shown to have an anti-cancer effect in certain cancer types. The MTT results demonstrated that the TTFM extracts significantly reduced the cell viability of the breast cancer 4T1 and MDA-MB-231 cell lines. Moreover, an apoptosis assay, demonstrated that the TTFM extracts significantly increased the proportion of apoptotic cells. Furthermore, the RNA-sequencing results demonstrated that 25 known genes were affected by TTFM treatment in 4T1 cells. TTFM treatment significantly up-regulated Slc5a8 and Arhgap9 expression compared with untreated cells. Moreover, Cybb, and Bach2os were significantly downregulated after TTFM treatment compared with untreated cells. Reverse transcription-quantitative PCR demonstrated that TTFM extract treatment significantly increased Slc5a8 and Arhgap9 mRNA expression levels and significantly decreased Cybb mRNA expression levels. Moreover, the mRNA expression levels of Bax and Casp9 were significantly increased after TTFM treatment in 4T1 cells compared with EpH4-Ev cells. These findings indicated anti-breast cancer activity via induction of the apoptotic process. However, further experiments are required to elucidate how TTFM specifically regulates genes and proteins. This study supports the potential usage of TTFM extracts for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Ariya Khamwut
- Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Pornchai Kaewsapsak
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavaret Sivapornnukul
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kridsana Chantanakat
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | | | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Jampilek J, Kralova K. Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems. Pharmaceutics 2022; 14:2681. [PMID: 36559176 PMCID: PMC9781429 DOI: 10.3390/pharmaceutics14122681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The use of natural compounds is becoming increasingly popular among patients, and there is a renewed interest among scientists in nature-based bioactive agents. Traditionally, herbal drugs can be taken directly in the form of teas/decoctions/infusions or as standardized extracts. However, the disadvantages of natural compounds, especially essential oils, are their instability, limited bioavailability, volatility, and often irritant/allergenic potential. However, these active substances can be stabilized by encapsulation and administered in the form of nanoparticles. This brief overview summarizes the latest results of the application of nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers used as drug delivery systems of herbal essential oils or used directly for their individual secondary metabolites applicable in cancer therapy. Although the discussed bioactive agents are not typical compounds used as anticancer agents, after inclusion into the aforesaid formulations improving their stability and bioavailability and/or therapeutic profile, they indicated anti-tumor activity and became interesting agents with cancer treatment potential. In addition, co-encapsulation of essential oils with synthetic anticancer drugs into nanoformulations with the aim to achieve synergistic effect in chemotherapy is discussed.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
8
|
Ganić T, Vuletić S, Nikolić B, Stevanović M, Kuzmanović M, Kekić D, Đurović S, Cvetković S, Mitić-Ćulafić D. Cinnamon essential oil and its emulsion as efficient antibiofilm agents to combat Acinetobacter baumannii. Front Microbiol 2022; 13:989667. [PMID: 36299724 PMCID: PMC9589355 DOI: 10.3389/fmicb.2022.989667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial pathogen resistant to a wide spectrum of antibiotics, with great potential to form a biofilm, which further aggravates treatment of infections caused by it. Therefore, searching for new potent agents that are efficient against A. baumannii seems to be a necessity. One of them, which has already been proven to possess a wide spectrum of biological activities, including antimicrobial effect, is cinnamon essential oil. Still, further increase of antibacterial efficacy and improvement of bioavailability of cinnamon oil is possible by emulsification process. The aim of this study was comparative analysis of cinnamon essential oil and its emulsion against biofilm forming A. baumannii clinical isolates. Furthermore, the investigation of toxicological aspects of possible applications of essential oil and emulsion was done as well. Gas chromatography–mass spectrometry of essential oil indicated trans-cinnamaldehyde as the most abundant component. The cinnamon emulsion was synthesized from cinnamon essential oil by combining modified low- and high- energy methods. Synthesized emulsion was characterized with Fourier-transform infrared spectroscopy and photon correlation spectroscopy. Both substances exhibited significant antibacterial (minimal inhibitory concentrations in the range 0.125–0.5 mg/ml) and antibiofilm effects (inhibitions of formation and reduction of pre-formed biofilm were 47–81 and 30–62%, respectively). Compared to essential oil, the efficacy of emulsion was even stronger considering the small share of pure oil (20%) in the emulsion. The result of biofilm eradication assay was confirmed by scanning electron microscopy. Even though the cytotoxicity was high especially for the emulsion, genotoxicity was not determined. In conclusion, strong antibacterial/antibiofilm effect against A. baumannii of the cinnamon essential oil and the fact that emulsification even potentiated the activity, seems to be of great significance. Observed cytotoxicity implicated that further analysis is needed in order to clearly determine active principles being responsible for obtained antibacterial/antibiofilm and cytotoxic properties.
Collapse
Affiliation(s)
- Tea Ganić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Stefana Vuletić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Magdalena Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Belgrade, Serbia
| | - Maja Kuzmanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Belgrade, Serbia
| | - Dušan Kekić
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Saša Đurović
- Institute of General and Physical Chemistry, Belgrade, Serbia
| | | | - Dragana Mitić-Ćulafić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Dragana Mitić-Ćulafić,
| |
Collapse
|