1
|
Yi K, Ma Y, Zhang P, He H, Lin Y, Sun D. Environmental and Clinical Factors Concerning Gastrointestinal Bleeding: An Umbrella Review of Meta-Analyses. J Am Med Dir Assoc 2025; 26:105412. [PMID: 39818418 DOI: 10.1016/j.jamda.2024.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVES Gastrointestinal bleeding, an emergency and critical disease, is affected by multiple factors. This study aims to systematically summarize and appraise various factors associated with gastrointestinal bleeding. DESIGN Umbrella review. SETTING AND PARTICIPANTS Meta-analyses that evaluated environmental and clinical factors concerning gastrointestinal bleeding. METHODS We conducted a systematic search to identify eligible meta-analyses. For each included study, the risk estimates, heterogeneity estimates, small-study effects, excess significance tests, and publication biases were recalculated and appraised. Furthermore, we considered the methodologic quality and classified the evidence. RESULTS In this study, 51 beneficial and 44 harmful associations were found. This study found that preemptive transjugular intrahepatic portosystemic shunt was the most reliable treatment to reduce gastroesophageal variceal bleeding and mortality risk, followed by antibiotics. For gastroduodenal ulcer bleeding, Yunnan Baiyao and proton pump inhibitors (PPIs) were relatively dependable treatment drugs, and the comparatively reliable prophylactic drugs comprised PPIs and H2-receptor antagonists. Patients with hemodynamic instability and larger ulcers had a higher risk of rebleeding. Both weekend admissions and the combination of selective serotonin reuptake inhibitors and nonsteroidal anti-inflammatory drugs were high-risk factors for upper gastrointestinal bleeding and mortality. We also found that tranexamic acid was a credible drug for overall gastrointestinal bleeding. Meanwhile, aspirin, warfarin, diabetes, and renal failure were all high-risk factors. CONCLUSIONS AND IMPLICATIONS Altogether, many factors can substantially influence gastrointestinal bleeding. Therefore, in daily life and clinical practice, we should not only remain cautious in prescribing and taking some drugs but also pay attention to the management of lifestyle and underlying diseases. If necessary, protective drugs should be properly supplemented.
Collapse
Affiliation(s)
- Keqian Yi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, China
| | - Yu Ma
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, China
| | - Pengcheng Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, China
| | - Haiyu He
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, China.
| | - Yueying Lin
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, China.
| | - Dali Sun
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Vernon JJ. Modulation of the Human Microbiome: Probiotics, Prebiotics, and Microbial Transplants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:277-294. [PMID: 40111698 DOI: 10.1007/978-3-031-79146-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The balance between health and disease is intrinsically linked to the interactions between microbial communities and the host. This complex environment of antagonism and synergy involves both prokaryotic and eukaryotic cells, whose collaborative metabolic pathways and immunomodulatory elements influence system homeostasis. As with the gut and other niches, the oral microbiome has the capacity to affect distal host sites. The ability to manipulate this environment holds the potential to impact local and systemic disease.With the increasing threat of antimicrobial resistance, novel approaches to reduce the burden of disease are essential. The use of probiotics and prebiotics is one such strategy. Probiotics introduce non-pathogenic bacteria into the environment to compete with pathogens for nutrients and attachment sites, or to produce metabolites that counteract disease aetiologies. Prebiotic compounds enhance the growth of health-associated organisms, offering additional benefits, whilst a conjunctive approach with probiotics potentially holds even greater promise. Though widely studied in the gastrointestinal context, their potential for treating oral diseases, such as dental caries and periodontitis, is less understood. Additionally, the use of microbial transplantations has demonstrated efficacy in other areas, reducing systemic inflammation and recolonising with commensal bacteria. Here we evaluate their use in the oral context and their modulatory impact on overall health.In this chapter, we discuss how pro- and prebiotic strategies seek to modulate both the oral and gut environments to promote oral health and prevent disease. We assess novel approaches for utilising health-associated microorganisms to combat oral disorders, either administered locally in the mouth or imparting influence through immune modulation via the oral-gut axis. By examining available clinical trial data, we aim to further understand the intricacies involved in this discipline. Furthermore, we consider the challenges facing the research community, including optimal candidate organism/compound selection and colonisation retention, as well as considerations for future research.
Collapse
Affiliation(s)
- Jon J Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK.
| |
Collapse
|
3
|
Mendonça C, Marques D, Silveira J, Marques J, de Souza RF, Mata A. Effects of Probiotic Therapy on Periodontal and Peri-implant Treatments: An Umbrella Review. JDR Clin Trans Res 2024:23800844241240474. [PMID: 39508204 DOI: 10.1177/23800844241240474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION The effectiveness of nonsurgical periodontal treatment is related to patient- and tooth-related factors. To overcome the limitations of the conventional approach, probiotics are one of the adjunct therapies that have been studied. OBJECTIVES This umbrella review answered the focused question: in adult patients with periodontal diseases or peri-implant diseases, does the use of probiotic therapy as an adjuvant to nonsurgical periodontal treatment when compared with nonsurgical periodontal treatment alone affect treatment effectiveness and clinical disease parameters? METHODS A systematic electronic search to identify systematic reviews according to PICOS criteria, defined a priori, was used, and 5 electronic databases were searched (Medline, LILACS, Cochrane Central Registry of Controlled Trials, Google Scholar, and DANS EASY). Included systematic reviews were rated using quality assessment tools by 2 independent reviewers. RESULTS Thirty systematic reviews were identified evaluating the effectiveness of probiotics in periodontal and peri-implant disease treatment. A quantitative analysis of the results was not possible due to the high heterogeneity of clinical data. Seventeen of 31 reviews reported clinically relevant benefits of probiotic therapy as an adjuvant to scaling and root planning. Twenty-two reviews had a low risk of bias, 7 had a moderate risk, and 2 had a high risk. CONCLUSION The evidence from the available studies is conflicting, which means that no definitive conclusions can be made about the effectiveness of probiotic therapy as an adjuvant to nonsurgical periodontal treatment. High-quality primary research studies are needed that control for known confounding variables. KNOWLEDGE TRANSFER STATEMENT This umbrella review provides some evidence regarding the efficacy of probiotics as an adjunct to nonsurgical periodontal therapy, despite some equivocal findings. However, short-term probiotic use alongside therapy appears to be advantageous; there is currently no evidence supporting their long-term benefits. We have also identified that probiotic research is primarily constrained by its origins in gastrointestinal applications, resulting in a lack of approved probiotics for dental use. This review highlights the need for extensive clinical research to ascertain their effectiveness in the oral environment. Nevertheless, the utilization of probiotics alongside periodontal treatment seems safe, with no reported adverse effects in patients. Thus, further clinical validations in oral health care settings are crucial.
Collapse
Affiliation(s)
- C Mendonça
- Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Biology and Oral Biochemistry Group, LIBPhys-FCT UIDB/04559/2020, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Hugo Madeira Clinic-Advanced Aesthetics and Implantology, Lisbon, Portugal
| | - D Marques
- Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Biology and Oral Biochemistry Group, LIBPhys-FCT UIDB/04559/2020, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Institute of Implantology, Lisbon, Portugal
| | - J Silveira
- Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Biology and Oral Biochemistry Group, LIBPhys-FCT UIDB/04559/2020, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
| | - J Marques
- Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Biology and Oral Biochemistry Group, LIBPhys-FCT UIDB/04559/2020, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
| | - R F de Souza
- Faculty of Dental Medicine and Oral Health Sciences, Montreal, QC, Canada
| | - A Mata
- Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Biology and Oral Biochemistry Group, LIBPhys-FCT UIDB/04559/2020, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Hugo Madeira Clinic-Advanced Aesthetics and Implantology, Lisbon, Portugal
| |
Collapse
|
4
|
Al-Akayleh F, Agha ASAA, Al-Remawi M, Al-Adham ISI, Daadoue S, Alsisan A, Khattab D, Malath D, Salameh H, Al-Betar M, AlSakka M, Collier PJ. What We Know About the Actual Role of Traditional Probiotics in Health and Disease. Probiotics Antimicrob Proteins 2024; 16:1836-1856. [PMID: 38700762 DOI: 10.1007/s12602-024-10275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 10/02/2024]
Abstract
The complex relationship between probiotics and human health goes beyond their traditional function in gut health, generating considerable interest for their broad potential in disease treatment. This review explores the various functions of probiotics, highlighting their impact on the immune system, their benefits for gut and oral health, their effects on metabolic and neurological disorders, and their emerging potential in cancer therapy. We give significant importance to studying the effects of probiotics on the gut-brain axis, revealing new and non-invasive therapeutic approaches for complex neurological disorders. In addition, we expand the discussion to encompass the impact of probiotics on the gut-liver and gut-lung axes, recognizing their systemic effects and potential in treating respiratory and hepatic conditions. The use of probiotic "cocktails" to improve cancer immunotherapy outcomes indicates a revolutionary approach to oncological treatments. The review explores the specific benefits associated with various strains and the genetic mechanisms that underlie them. This study sets the stage for precision medicine, where probiotic treatments can be tailored to meet the unique needs of each patient. Recent developments in delivery technologies, including microencapsulation and nanotechnology, hold great potential for enhancing the effectiveness and accuracy of probiotic applications in therapeutic settings. This study provides a strong basis for future scientific research and clinical use, promoting the incorporation of probiotics into treatment plans for a wide range of diseases. This expands our understanding of the potential benefits of probiotics in modern medicine.
Collapse
Affiliation(s)
- Faisal Al-Akayleh
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan.
| | - Ahmed S A Ali Agha
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
- Faculty of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Ibrahim S I Al-Adham
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Saifeddin Daadoue
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Anagheem Alsisan
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Dana Khattab
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Doha Malath
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Haneen Salameh
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Maya Al-Betar
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Motaz AlSakka
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan.
| |
Collapse
|
5
|
Baishya B, Yadav S, Mahajan K, Kumar P, Ali H, Rishi MS, Wankhede P. A Blissful Role of Probiotic Therapy as an Adjunct to Periodontal Surgery in the Treatment of Periodontitis. Cureus 2024; 16:e71180. [PMID: 39525150 PMCID: PMC11549589 DOI: 10.7759/cureus.71180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024] Open
Abstract
Background Periodontitis is a chronic inflammatory disease that alters the alveolar bone structure, requiring treatment ranging from non-surgical to surgical periodontal therapies based on its severity. Surgical interventions, such as the modified Widman flap procedure and the open flap technique combined with methods like platelet-rich fibrin (PRF), guided tissue regeneration (GTR), and bone grafts, aim to reduce periodontal pockets and regenerate lost tissues. The presence of pathogenic bacteria and the absence of beneficial bacteria contribute to periodontitis, with probiotics-live microorganisms that offer health benefits emerging as a promising adjunct in periodontal therapy. Probiotics can inhibit harmful organisms and enhance the oral mucosal lining, potentially improving clinical outcomes when used alongside surgical procedures. This study aims to evaluate the efficacy of combining probiotics with open flap debridement (OFD) in managing chronic periodontitis, comparing it to OFD alone. Methodology Eighty individuals were recruited in this double-blind, randomization clinically controlled, split-mouth trial. The enrolled individuals were categorized in a random manner into either Group A (OFD) or Group B (OFD with probiotic therapy, OFD + P). Results Based on the results, significant differences were observed between the OFD and OFD + P groups. At baseline, the mean probing pocket depth (PPD) was 6.49 mm in the OFD group and 5.68 mm in the OFD + P group. After three weeks, the PPD decreased to 4.71 mm in the OFD group and 3.95 mm in the OFD + P group, with a p-value of 0.021, indicating a significant difference. By 12 weeks, the PPD was 3.20 mm for OFD and 2.74 mm for OFD + P, though the difference was not statistically significant (p-value 0.108). For relative attachment level (RAL), a significant difference was noted after three weeks with a p-value of 0.018; however, differences at baseline and 12 weeks were not significant. The gingival index (GI) did not show significant differences between the groups at any time point. Within-group analyses revealed significant improvements in PPD, RAL, and GI for both groups over time, with all p-values < 0.001. The OFD + P group demonstrated superior outcomes compared to the OFD group in PPD and RAL after three weeks. Conclusion The use of probiotics in managing periodontal disease offers a cost-effective and convenient treatment option for periodontitis. Its integration into periodontal therapy should be emphasized for its potential benefits across all age groups, benefiting both periodontal surgeons and general dentists. Further research is needed to understand how well probiotics persist in the oral microflora and their precise effects on periodontal health. The future of periodontal therapy could greatly benefit from probiotics as a natural, food-based approach to enhancing immunity and improving oral health.
Collapse
Affiliation(s)
| | - Sweta Yadav
- Periodontology, Teerthanker Mahaveer Dental College and Research Centre, Teerthanker Mahaveer University, Moradabad, IND
| | - Kajal Mahajan
- Periodontology, Ram Krishna Dharmarth Foundation University Dental College and Research Center, Bhopal, IND
| | - Pratiksha Kumar
- Oral Pathology and Microbiology, Government College of Dentistry, Indore, IND
| | - Hasbeena Ali
- Periodontology, Dental House Oral Healthcare Centre, Vattamkulam, Kerala, IND
| | | | - Pratibha Wankhede
- Public Health, Shalinitai Meghe College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
6
|
Babina K, Salikhova D, Makeeva I, Zaytsev A, Sokhova I, Musaeva S, Polyakova M, Novozhilova N. A Three-Month Probiotic (the Streptococcus salivarius M18 Strain) Supplementation Decreases Gingival Bleeding and Plaque Accumulation: A Randomized Clinical Trial. Dent J (Basel) 2024; 12:222. [PMID: 39057009 PMCID: PMC11276176 DOI: 10.3390/dj12070222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
S. salivarius M18 administration has been proven to provide positive effects on periodontal health; however, there is still no consensus on the optimum duration of probiotic administration. This study aimed to evaluate the effect of three months of probiotic supplementation on bleeding on probing, signs of gingival inflammation, and dental biofilm. Sixty-two eligible individuals with gingivitis were enrolled in this placebo-controlled, double-blind trial and randomly allocated to the M18 or control groups. Primary outcomes were changes in gingival condition (gingival index, GI; gingival bleeding index, GBI) after 1, 2, and 3 months of lozenges administration and after a one-month washout. Secondary outcomes included changes in the Quigley-Hein plaque index (modified by Turesky et al.) after 1, 2, and 3 months of lozenges administration and after a washout. In total, 60 individuals completed the study (31 and 29 in the M18 group and the control group, respectively). No severe adverse events were reported. Probiotic supplementation resulted in a significant decrease in gingival bleeding at 1 month (effect size 1.09 [CI95%: 0.55-1.63]), 2 months (effect size 0.78 [CI95%: 0.26-1.30]), and 3 months (effect size 0.67 [CI95%: 0.15-1.18]) and a significant reduction in dental plaque accumulation at 2 months (effect size 0.63 [CI95%: 0.12-1.14]) and 3 months (effect size 0.55 [CI95%: 0.03-1.05]). A three-month supplementation with the probiotic resulted in a significant reduction in gingival bleeding and biofilm accumulation; however, a long-lasting effect is not expected, indicating the need for probiotic intake on a long-term basis.
Collapse
Affiliation(s)
- Ksenia Babina
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (D.S.); (I.M.); (I.S.); (S.M.); (M.P.); (N.N.)
| | - Dilara Salikhova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (D.S.); (I.M.); (I.S.); (S.M.); (M.P.); (N.N.)
| | - Irina Makeeva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (D.S.); (I.M.); (I.S.); (S.M.); (M.P.); (N.N.)
| | - Alexandr Zaytsev
- Institute of Linguistics and Intercultural Communication, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia;
| | - Inna Sokhova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (D.S.); (I.M.); (I.S.); (S.M.); (M.P.); (N.N.)
| | - Sevil Musaeva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (D.S.); (I.M.); (I.S.); (S.M.); (M.P.); (N.N.)
| | - Maria Polyakova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (D.S.); (I.M.); (I.S.); (S.M.); (M.P.); (N.N.)
| | - Nina Novozhilova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (D.S.); (I.M.); (I.S.); (S.M.); (M.P.); (N.N.)
| |
Collapse
|
7
|
Del Pilar Angarita-Díaz M, Fong C, Medina D. Bacteria of healthy periodontal tissues as candidates of probiotics: a systematic review. Eur J Med Res 2024; 29:328. [PMID: 38877601 PMCID: PMC11177362 DOI: 10.1186/s40001-024-01908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
OBJECTIVES The use of probiotics could promote the balance of the subgingival microbiota to contribute to periodontal health. This study aimed to identify the potential of bacteria commonly associated with healthy periodontal tissues as probiotic candidates. MATERIAL AND METHODS A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines using the PubMed, Scopus, Science Direct, ProQuest, and Ovid databases as well as the combination of Medical Subject Headings (MeSH) and non-MeSH terms. Based on the selection criteria, original studies published in English and identifying the microorganisms present in the periodontium of healthy individuals and patients with periodontitis using the high-throughput 16S ribosomal gene sequencing technique were included. RESULTS Out of 659 articles, 12 met the criteria for this review. These articles were published from 2012 to 2020 and mainly originated from the United States, China, and Spain. Most of these studies reported adequate criteria for selecting participants, using standardized clinical criteria, and compliance with quality based on the tools used. In periodontal healthy tissue were identified species like Actinomyces viscosus, Actinomyces naeslundii, Haemophilus parainfluenzae, Rothia dentocariosa, Streptococcus sanguinis, Streptococcus mitis, Streptococcus oralis, Streptococcus gordonii, Streptococcus intermedius, and Prevotella nigrescens which have recognized strains with a capacity to inhibit periodontopathogens. CONCLUSIONS S. sanguinis, S. oralis, S. mitis, and S. gordonii are among the bacterial species proposed as potential probiotics because some strains can inhibit periodontopathogens and have been reported as safe for humans.
Collapse
Affiliation(s)
- María Del Pilar Angarita-Díaz
- GIOMET Group, Faculty of Dentistry, Universidad Cooperativa de Colombia, Campus Villavicencio, Carrera 35 # 36 99, Villavicencio, Colombia.
| | - Cristian Fong
- Ciencia y Pedagogía Group, School of Medicine, Universidad Cooperativa de Colombia, Campus Santa Marta, Santa Marta, Colombia
| | - Daniela Medina
- School of Dentistry, Universidad Cooperativa de Colombia, Campus Villavicencio, Villavicencio, Colombia
| |
Collapse
|
8
|
Mahdizade Ari M, Mirkalantari S, Darban-Sarokhalil D, Darbandi A, Razavi S, Talebi M. Investigating the antimicrobial and anti-inflammatory effects of Lactobacillus and Bifidobacterium spp. on cariogenic and periodontitis pathogens. Front Microbiol 2024; 15:1383959. [PMID: 38881669 PMCID: PMC11177620 DOI: 10.3389/fmicb.2024.1383959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background The use of probiotics is emerging as an innovative approach to managing oral health issues and mediating the immune system. The current study assessed the in vitro impacts of non-orally isolated probiotics on periodontitis and tooth decay pathogens. Methods Briefly, the persistence of probiotics in exposure to oral cavity enzymes, hydrogen peroxide, and saliva samples was examined. It was also investigated the biofilm formation and aggregation ability of probiotics, the adherence of probiotics in human gingival fibroblast cell (HGFC) lines and molar teeth samples, and the potential of probiotics to co-aggregate with oral pathogens. Additionally, the current study evaluated the effects of live probiotics on virulence gene expression, biofilm production of main oral pathogens, and changes in inflammation markers. Results The probiotics remained alive when exposed to enzymes in the oral cavity, hydrogen peroxide, and saliva at baseline, 1, 3, and 5 h after incubation at 37°C (p-value <0.05). Probiotics demonstrated to produce biofilm and aggregation, as well as adherence to HGFCs and maxillary molars (p-value >0.05). They showed significant co-aggregation with oral pathogens, which were recorded as 65.57% for B. bifidum 1001 with S. mutans, 50.06% for B. bifidum 1005 with P. gingivalis, 35.6% for L. plantarum 156 with F. nucleatum, and 18.7% for B. longum 1044 with A. actinomycetemcomitans after 8 h of incubation. A balance between pro-inflammatory and anti-inflammatory cytokines, along with inhibition of biofilm formation and changes in virulence gene transcripts, were observed. However, most of these changes were not statistically significant (p-value >0.05). Conclusion This study demonstrated the direct link between adhesiveness, aggregation, and biofilm formation with probiotic antibacterial activity. In addition to the careful selection of suitable probiotic strains, the concentration and origin of probiotic isolates should be considered.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Benahmed AG, Tippairote T, Gasmi A, Noor S, Avdeev O, Shanaida Y, Mojgani N, Emadali A, Dadar M, Bjørklund G. Periodontitis Continuum: Antecedents, Triggers, Mediators, and Treatment Strategies. Curr Med Chem 2024; 31:6775-6800. [PMID: 39428847 DOI: 10.2174/0109298673265862231020051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 10/22/2024]
Abstract
Periodontitis (PD) is a chronic inflammatory disease of the periodontium characterized by the formation of gingival pockets and gingival recession. The local inflammatory environment can lead to the destruction of the extracellular matrix and subsequent bone loss. The pathophysiology of PD involves interactions between genetic predisposition, lifestyle, environmental factors, the oral microbiota condition, systemic health disorders, innate and adaptive immune responses, and various host defenses. The review highlighted the importance of the oral cavity condition in systemic health. Thus, a correlation between harmful oral microbiota and cardiovascular disease (CVD)/diabetes/ arthritis, etc, progressions through inflammation and bacterial translocation was highlighted. Antecedents increase an individual's risk of developing PD, trigger initiate microbe-host immunologic responses, and mediators sustain inflammatory interactions. Generally, this review explores the antecedents, triggers, and mediators along the pathophysiological continuum of PD. An analysis of modern approaches to treating periodontitis, including antibiotics for systemic and local use, was carried out. The potential role of natural ingredients such as herbal extracts, phytoconstituents, propolis, and probiotics in preventing and treating PD was highlighted.
Collapse
Affiliation(s)
| | - Torsak Tippairote
- Department of Research, HP Medical Centre, Bangkok, Thailand
- Thailand Initiatives for Functional Medicine, Bangkok, Thailand
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Oleksandr Avdeev
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Yurii Shanaida
- Pediatric Dentistry Department, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Naheed Mojgani
- Biotechnology Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Alireza Emadali
- School of Dentistry Medicine, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Dadar
- Department of Research, CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
10
|
Goff DA, McFarland LV, Johnson S, Goff DW. The dual role for probiotics use in dental practices. FRONTIERS IN ORAL HEALTH 2023; 4:1336565. [PMID: 38179437 PMCID: PMC10764435 DOI: 10.3389/froh.2023.1336565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Debra A. Goff
- Global Antibiotic Stewardship, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Pharmacy, The Ohio State University College of Pharmacy, Columbus, OH, United States
| | | | - Stuart Johnson
- Infectious Diseases Division, Loyola University Medical Center, Chicago, IL, United States
- Departments of Medicine and Research, Edward Hines Jr. VA Hospital, Hines, IL, United States
| | - Douglas W. Goff
- Gilbert and Goff Prosthodontists, Upper Arlington, Columbus, OH, United States
| |
Collapse
|
11
|
Pacheco-Yanes J, Reynolds E, Li J, Mariño E. Microbiome-targeted interventions for the control of oral-gut dysbiosis and chronic systemic inflammation. Trends Mol Med 2023; 29:912-925. [PMID: 37730461 DOI: 10.1016/j.molmed.2023.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
Recent research has confirmed the strong connection between imbalances in the oral and gut microbiome (oral-gut dysbiosis), periodontitis, and inflammatory conditions such as diabetes, Alzheimer's disease, and cardiovascular diseases. Microbiome modulation is crucial for preventing and treating several autoimmune and inflammatory diseases, including periodontitis. However, the causal relationships between the microbiome and its derived metabolites that mediate periodontitis and chronic inflammation constitute a notable knowledge gap. Here we review the mechanisms involved in the microbiome-host crosstalk, and describe novel precision medicine for the control of systemic inflammation. As microbiome-targeted therapies begin to enter clinical trials, the success of these approaches relies upon understanding these reciprocal microbiome-host interactions, and it may provide new therapeutic avenues to reduce the risk of periodontitis-associated diseases.
Collapse
Affiliation(s)
- Juan Pacheco-Yanes
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Eric Reynolds
- Oral Health Collaborative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Jian Li
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Eliana Mariño
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; ImmunoBiota Therapeutics Pty Ltd, Melbourne, Australia.
| |
Collapse
|
12
|
Babina K, Salikhova D, Doroshina V, Makeeva I, Zaytsev A, Uvarichev M, Polyakova M, Novozhilova N. Antigingivitis and Antiplaque Effects of Oral Probiotic Containing the Streptococcus salivarius M18 Strain: A Randomized Clinical Trial. Nutrients 2023; 15:3882. [PMID: 37764667 PMCID: PMC10535351 DOI: 10.3390/nu15183882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
We aimed to assess the effect of oral probiotic containing the Streptococcus salivarius M18 strain on gingival inflammation, bleeding on probing, and oral biofilm. Sixty-one consenting participants aged between 18 and 25 with gingivitis were recruited in this double-blind, parallel-group study and randomly divided into the probiotic group (n = 31) and the placebo group (n = 30). Fifty-seven participants completed the entire study protocol, 27 in the probiotic group and 30 in the placebo group. The outcomes were assessed after 4 weeks of intervention and 4 weeks of follow-up. There was a significant decrease in the Gingival Index, with the effect size of 0.58 [95%CI 0.05-1.10], and Turesky modification of the Quigley and Hein Plaque Index, with the effect size of 0.55 [95%CI: 0.02-1.07], in the probiotic group after the intervention. However, after a 4-week follow-up, the only significant treatment outcome was improved gingival condition according to the Gingival Index. The Gingival Bleeding Index also decreased significantly in the probiotic group after the intervention period; after the follow-up, this parameter did not differ significantly in both groups from the baseline values. In the placebo group, there were no significant improvements in the assessed parameters throughout this study. No serious side effects were registered. Within the limitations of this study, we conclude that the use of oral probiotic containing the Streptococcus salivarius M18 strain resulted in a significant improvement in gingival condition and oral hygiene level in young adults with gingivitis. Trial registration NCT05727436. Funding: none.
Collapse
Affiliation(s)
- Ksenia Babina
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.); (V.D.); (I.M.); (M.U.); (M.P.); (N.N.)
| | - Dilara Salikhova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.); (V.D.); (I.M.); (M.U.); (M.P.); (N.N.)
| | - Vladlena Doroshina
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.); (V.D.); (I.M.); (M.U.); (M.P.); (N.N.)
| | - Irina Makeeva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.); (V.D.); (I.M.); (M.U.); (M.P.); (N.N.)
| | - Alexandr Zaytsev
- Institute of Linguistics and Intercultural Communication, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Matvey Uvarichev
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.); (V.D.); (I.M.); (M.U.); (M.P.); (N.N.)
| | - Maria Polyakova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.); (V.D.); (I.M.); (M.U.); (M.P.); (N.N.)
| | - Nina Novozhilova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.); (V.D.); (I.M.); (M.U.); (M.P.); (N.N.)
| |
Collapse
|
13
|
Van Holm W, Lauwens K, De Wever P, Schuermans A, Zayed N, Pamuk F, Saghi M, Fardim P, Bernaerts K, Boon N, Teughels W. Probiotics for oral health: do they deliver what they promise? Front Microbiol 2023; 14:1219692. [PMID: 37485503 PMCID: PMC10358723 DOI: 10.3389/fmicb.2023.1219692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Probiotics have demonstrated oral health benefits by influencing the microbiome and the host. Although promising, their current use is potentially constrained by several restrictions. One such limiting factor lies in the prevailing preparation of a probiotic product. To commercialize the probiotic, a shelf stable product is achieved by temporarily inactivating the live probiotic through drying or freeze drying. Even though a lyophilized probiotic can be kept dormant for an extended period of time, their viability can be severely compromised, making their designation as probiotics questionable. Additionally, does the application of an inactive probiotic directly into the oral cavity make sense? While the dormancy may allow for survival on its way towards the gut, does it affect their capacity for oral colonisation? To evaluate this, 21 probiotic product for oral health were analysed for the number of viable (probiotic), culturable (CFU) and dead (postbiotic) cells, to verify whether the commercial products indeed contain what they proclaim. After isolating and uniformly lyophilizing three common probiotic species in a simple yet effective lyoprotective medium, the adhesion to saliva covered hydroxyapatite discs of lyophilized probiotics was compared to fresh or reactivated lyophilized probiotics. Unfortunately, many of the examined products failed to contain the claimed amounts of viable cells, but also the strains used were inadequately characterized and lacked clinical evidence for that unknown strain, questioning their label of a 'probiotic'. Additionally, lyophilized probiotics demonstrated low adhesive capacity compared to their counterparts, prompting the question of why fresh or reactivated probiotics are not currently used.
Collapse
Affiliation(s)
- Wannes Van Holm
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
- Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Ghent, Belgium
| | - Katalina Lauwens
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
| | - Pieter De Wever
- Bio-and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven KU Leuven, Leuven, Belgium
| | | | - Naiera Zayed
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
- Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Ghent, Belgium
- Faculty of Pharmacy, Menoufia University, Shebeen El-Kom, Egypt
| | - Ferda Pamuk
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
| | - Mehraveh Saghi
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
| | - Pedro Fardim
- Bio-and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven KU Leuven, Leuven, Belgium
| | - Kristel Bernaerts
- Bio-and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven KU Leuven, Leuven, Belgium
| | - Nico Boon
- Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Ghent, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Lai D, Ma W, Wang J, Zhang L, Shi J, Lu C, Gu X. Immune infiltration and diagnostic value of immune-related genes in periodontitis using bioinformatics analysis. J Periodontal Res 2023; 58:369-380. [PMID: 36691896 DOI: 10.1111/jre.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/14/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis, which is a chronic inflammatory periodontal disease resulting in destroyed periodontal tissue, is the leading cause of tooth loss in adults. Many studies have found that inflammatory immune responses are involved in the risk of periodontal tissue damage. Therefore, we analyzed the association between immunity and periodontitis using bioinformatics methods to further understand this disease. MATERIALS AND METHODS First, the expression profiles of periodontitis and healthy samples were downloaded from the GEO database, including a training dataset GSE16134 and an external validation dataset GSE10334. Then, differentially expressed genes were identified using the limma package. Subsequently, immune cell infiltration was calculated by using the CIBERSORT algorithm. We further identified genes linking periodontitis and immunity from the ImmPort and DisGeNet databases. In addition, some of them were selected to construct a diagnostic model via a logistic stepwise regression analysis. RESULTS AND CONCLUSIONS Two hundred sixty differentially expressed genes were identified and found to be involved in responses to bacterial and immune-related processes. Subsequently, immune cell infiltration analysis demonstrates significant differences in the abundance of most immune cells between periodontitis and healthy samples, especially in plasma cells. These results suggested that immunity doses play a non-negligible role in periodontitis. Twenty-one genes linking periodontitis and immunity were further identified. And nine hub genes of them were identified that may be key genes involved in the development of periodontitis. Gene ontology analyses showed that these genes are involved in response to molecules of bacterial origin, cell chemotaxis, and response to chemokines. In addition, three genes of them were selected to construct a diagnostic model. And its good diagnostic performance was demonstrated by the receiver operating characteristic curves, with an area under the curve of 0.9424 for the training dataset and 0.9244 for the external validation dataset.
Collapse
Affiliation(s)
- Donglin Lai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhao Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jie Wang
- Department of prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luzhu Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Junfeng Shi
- Department of prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
15
|
Ferrillo M, Giudice A, Migliario M, Renó F, Lippi L, Calafiore D, Marotta N, de Sire R, Fortunato L, Ammendolia A, Invernizzi M, de Sire A. Oral-Gut Microbiota, Periodontal Diseases, and Arthritis: Literature Overview on the Role of Probiotics. Int J Mol Sci 2023; 24:4626. [PMID: 36902056 PMCID: PMC10003001 DOI: 10.3390/ijms24054626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Periodontal diseases are oral inflammatory diseases affecting the tissues supporting and surrounding the teeth and include gingivitis and periodontitis. Oral pathogens may lead to microbial products spreading into the systemic circulation and reaching distant organs, while periodontal diseases have been related to low-grade systemic inflammation. Gut and oral microbiota alterations might play a role in the pathogenesis of several autoimmune and inflammatory diseases including arthritis, considering the role of the gut-joint axis in the regulation of molecular pathways involved in the pathogenesis of these conditions. In this scenario, it is hypothesized that probiotics might contribute to the oral and intestinal micro-ecological balance and could reduce low-grade inflammation typical of periodontal diseases and arthritis. This literature overview aims to summarize state-of-the-art ideas about linkages among oral-gut microbiota, periodontal diseases, and arthritis, while investigating the role of probiotics as a potential therapeutic intervention for the management of both oral diseases and musculoskeletal disorders.
Collapse
Affiliation(s)
- Martina Ferrillo
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Amerigo Giudice
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Mario Migliario
- Dentistry Unit, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Filippo Renó
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, University of Eastern Piedmont, 28100 Novara, Italy
| | - Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Dario Calafiore
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy
| | - Nicola Marotta
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Roberto de Sire
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy
| | - Leonzio Fortunato
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Antonio Ammendolia
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
16
|
Matsubara VH, Fakhruddin KS, Ngo H, Samaranayake LP. Probiotic Bifidobacteria in Managing Periodontal Disease: A Systematic Review. Int Dent J 2022; 73:11-20. [PMID: 36535806 PMCID: PMC9875235 DOI: 10.1016/j.identj.2022.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although various probiotic organisms have been evaluated for their utility in the management of periodontitis, their strain-specific mechanisms of action are still unclear. We aimed to systematically review the effect of bifidobacterial probiotics on periodontopathogens and host immune responses in periodontal diseases. An electronic search of articles published until June 2022 in Medline, PubMed, Web of Science, and Cochrane Library databases was performed. Randomised controlled trials (RCTs) and in vitro and animal studies were assessed, and the data regarding antimicrobial properties, immunomodulation, and clinical outcomes were analysed. A total of 304 studies were screened, but only 3 RCTs and 6 animal and in vitro studies met the inclusion criteria. The use of different strains of bifidobacteria led to (1) a reduction of key players of the red complex periodontopathogens; (2) reduced levels of pro-inflammatory cytokines (eg, interleukin [IL]1-β and IL-8) and higher levels of anti-inflammatory cytokines (IL-10); (3) enhanced levels of osteoprotegerin and reduced levels of receptor activator of nuclear factor kappa-B ligand; and (4) a reduction of the dental plaque, bleeding on probing, alveolar bone loss, and clinical attachment loss. Bifidobacterial probiotic adjuvant supplementation, especially with Bifidobacterium animalis subspecies lactis, appears to help improve clinical periodontal parameters and develop a healthy plaque microbiome through microbiological and immunomodulatory pathways. Further human and animal studies are warranted prior to the therapeutic use of bifidobacteria in the routine management of periodontal infections.
Collapse
Affiliation(s)
- Victor Haruo Matsubara
- UWA Dental School, University of Western Australia, Perth, Western Australia, Australia,Corresponding author. Dental School, University of Western Australia, 17 Monash Avenue, Nedlands, Perth, WA 6009, Australia.
| | - Kausar Sadia Fakhruddin
- Department of Preventive and Restorative Dentistry, University of Sharjah, Sharjah, United Arab Emirates
| | - Hien Ngo
- UWA Dental School, University of Western Australia, Perth, Western Australia, Australia
| | - Lakshman P. Samaranayake
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| |
Collapse
|
17
|
Amato M, Di Spirito F, D’Ambrosio F, Boccia G, Moccia G, De Caro F. Probiotics in Periodontal and Peri-Implant Health Management: Biofilm Control, Dysbiosis Reversal, and Host Modulation. Microorganisms 2022; 10:2289. [PMID: 36422359 PMCID: PMC9694231 DOI: 10.3390/microorganisms10112289] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 07/30/2023] Open
Abstract
Periodontitis and peri-implantitis are microbially associated diseases of the tissues supporting the teeth and dental implants that are mediated by host inflammation and eventually lead to tooth and dental implant loss. Given the probiotics' role in biofilm control, dysbiosis reversal, and host modulation, their potential beneficial effects on the improvement of periodontitis and peri-implantitis have been recently investigated. Moreover, probiotics use has also been proposed in periodontal health management in patients undergoing fixed orthodontic therapy. Therefore, the present study aimed to review, considering the periodontal microbiome composition around teeth and dental implants in healthy and pathological conditions, the putative favorable effects of probiotics on gingivitis, periodontitis, and peri-implantitis. The secondary aim of the present narrative review was to synthesize the supporting evidence and proposed protocols for probiotics use as adjuncts in periodontitis and peri-implantitis treatment and the periodontal health management of orthodontic patients with fixed appliances. Contrasting findings from the literature may be due to the different methods, posology, and duration of probiotics prescriptions and due to the heterogeneous biological and clinical measurement methods employed. Thus, no definitive conclusions could be drawn about the effectiveness of probiotics in periodontal management, both in healthy and pathological conditions. Further studies are needed to validate probiotics for periodontal management and provide recommended protocols.
Collapse
|
18
|
Butera A, Pascadopoli M, Gallo S, Alovisi M, Lovati E, Mutti E, Scribante A. Domiciliary Management of Periodontal Indexes and Glycosylated Hemoglobin (HbA1c) in Type 1 Diabetic Patients with Paraprobiotic-Based Toothpaste and Mousse: Randomized Clinical Trial. APPLIED SCIENCES 2022; 12:8610. [DOI: 10.3390/app12178610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Background: Periodontal disease is a chronic inflammation of periodontal tissues. Several systemic diseases are related to this condition. One of the strongest associations is that of periodontitis and type 2 diabetes mellitus (T2DM). On the contrary, the link with type 1 diabetes mellitus (T1DM) has not been extensively investigated. The objective of the present report is to evaluate and compare the effect of two domiciliary oral hygiene protocols on the periodontal clinical status as well as on the metabolic control in patients affected by T1DM. Methods: Sample size calculation required 20 patients per group, therefore 40 patients were equally and randomly assigned to the following home oral care protocols: a probiotic-based one (trial group) and a natural extracts-based one (control group). At the beginning of the study, after 3 and 6 months, the following periodontal indexes were collected: Probing Pocket Depth (PPD), Plaque Index (PI), Clinical Attachment Level (CAL), Bleeding on Probing (BoP), and Glycosylated Hemoglobin (HbA1c). Data underwent statistical analysis (significance threshold: p < 0.05). Results: In both groups, significant decreases in the periodontal clinical indexes were found at various time frames, whereas the levels of HbA1c significantly decreased only in the control group. Conclusions: Both the domiciliary treatments administered can significantly improve PPD, PI, CAL, and BOP parameters, whereas only the natural extracts-based gel seems to decrease HbA1c levels of T1DM patients.
Collapse
Affiliation(s)
- Andrea Butera
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Mario Alovisi
- Department of Surgical Sciences, Dental School, University of Turin, 10124 Turin, Italy
| | - Elisabetta Lovati
- General Medicine 2, Diabetology Ambulatory, IRCCS Polyclinic San Matteo Foundation, 27100 Pavia, Italy
| | - Elisa Mutti
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Andrea Scribante
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
19
|
Gallo S, Pascadopoli M, Pellegrini M, Pulicari F, Manfredini M, Zampetti P, Spadari F, Maiorana C, Scribante A. CAD/CAM Abutments versus Stock Abutments: An Update Review. PROSTHESIS 2022; 4:468-479. [DOI: 10.3390/prosthesis4030038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
With the evolution of CAD/CAM technology, custom titanium and/or zirconia abutments are increasingly being used, leading to several comparisons in the literature, both mechanical and aesthetic, to evaluate performance differences between these two types of abutments. Therefore, the aim of this comprehensive review is to present the most recent data on the latest comparisons between CAD/CAM and stock abutment applications. The PICO model was used to perform this review, through a literature search of the PubMed (MEDLINE) and Scopus electronic databases. CAD/CAM abutments allow individualization of abutment parameters with respect to soft tissue, allow increased fracture toughness, predict the failure mode, show no change in the fracture toughness over time, reduce the prosthetic steps, and reduce the functional implant prosthesis score and pain perceived by patients in the early stages. The advantages associated with the use of stock abutments mainly concern the risk of corrosion, time spent, cost, and fit, evaluated in vitro, in the implant–abutment connection. Equal conditions are present regarding the mechanical characteristics during dynamic cycles, screw loss, radiographic fit, and degree of micromotion. Further randomized controlled clinical trials should be conducted to evaluate the advantages reported to date, following in vitro studies about titanium and/or zirconia stock abutments.
Collapse
Affiliation(s)
- Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Matteo Pellegrini
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Federica Pulicari
- Maxillo-Facial and Odontostomatology Unit, Department of Biomedical Surgical and Dental Sciences, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | - Mattia Manfredini
- Maxillofacial Surgery and Odontostomatology Unit, Implant Center for Edentulism and Jawbone Atrophies, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | - Paolo Zampetti
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Francesco Spadari
- Maxillo-Facial and Odontostomatology Unit, Department of Biomedical Surgical and Dental Sciences, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | - Carlo Maiorana
- Maxillofacial Surgery and Odontostomatology Unit, Implant Center for Edentulism and Jawbone Atrophies, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, 20122 Milan, Italy
| | - Andrea Scribante
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|