1
|
Li J, Rodriguez A, Wang K, Olsen K, Wang Y, Schwendeman A. In vitro and in vivo characterization of Invega Sustenna® (paliperidone palmitate long-acting injectable suspension). Eur J Pharm Biopharm 2025; 207:114613. [PMID: 39647670 DOI: 10.1016/j.ejpb.2024.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
The aim of this study was to comprehensively characterize paliperidone palmitate (PP) long-acting suspension (Invega Sustenna®) through reverse engineering. We developed a series of analytical methods to assess critical quality attributes of four batches of Invega Sustenna®. The size distributions of the four batches of suspensions were measured using laser diffraction, and variations in the D50 and D90 parameters were observed. The morphology of suspension was determined through scanning electron microscope (SEM), which exhibited irregular granular shape across all batches. The size distributions determined by SEM images were similar to the laser diffraction results. Thermal characteristics were detected using differential scanning calorimetry (DSC) and crystalline properties were assessed by powder X-ray diffraction (PXRD), displaying consistency among the four batches in these two aspects. In vitro dissolution methods (sample separation and dialysis bag methods) were developed to evaluate the release behaviors of Invega Sustenna® and four lots showed a similar dissolution pattern. Furthermore, following a single-dose intramuscular administration to rats, two batches of Invega Sustenna® with the largest size differences demonstrated comparable plasma concentration-time profiles and pharmacokinetics parameters, indicative of one month long-acting release. In summary, we established a systematic quality characteristics assessment for Invega Sustenna®, including particle size distribution, particle morphology, thermal characteristics, crystalline properties, in vitro dissolution kinetics and in vivo pharmacokinetics. Our work will assist pharmaceutical companies and regulatory agencies in the development and regulatory assessment of novel or generic products of long-acting injectable suspension.
Collapse
Affiliation(s)
- Ji Li
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Antonela Rodriguez
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaikai Wang
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karl Olsen
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yan Wang
- Division of Therapeutic Performance 1, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration. Silver Spring, MD 20993, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Lhaglham P, Jiramonai L, Liang XJ, Liu B, Li F. The development of paliperidone nanocrystals for the treatment of schizophrenia. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012002. [PMID: 39655839 DOI: 10.1088/2516-1091/ad8fe7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024]
Abstract
Schizophrenia is a complex and chronic psychiatric disorder that significantly impacts patients' quality of life. Ranking 12th among 310 diseases and injuries that result in disability, the number of patients suffering from schizophrenia continues to rise, emphasizing the urgent need for developing effective treatments. Despite the availability of effective antipsychotic drugs, over 80% of patients taking oral antipsychotics experience relapses, primarily caused by non-adherence as the high dosing frequency is required. In this review, we discuss about schizophrenia, its incidence, pathological causes, influencing factors, and the challenges of the current medications. Specifically, we explore nanocrystal technology and its application to paliperidone, making it one of the most successful long-acting antipsychotic drugs introduced to the market. We highlight the clinical advantages of paliperidone nanocrystals, including improved adherence, efficacy, long-term outcomes, patient satisfaction, safety, and cost-effectiveness. Additionally, we address the physicochemical factors influencing the drug's half-life, which crucially contribute to long-acting medications. Further studies on nanocrystal-based long-acting medications are crucial for enhancing their effectiveness and reliability. The successful development of paliperidone nanocrystals holds great promise as a significant approach for drug development, with potential applications for other chronic disease management.
Collapse
Affiliation(s)
- Phattalapol Lhaglham
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya road, Bangkok 10400, Thailand
| | - Luksika Jiramonai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, People's Republic of China
| | - Fangzhou Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
3
|
Alidori S, Subramanian R, Holm R. Patient-Centric Long-Acting Injectable and Implantable Platforms─An Industrial Perspective. Mol Pharm 2024; 21:4238-4258. [PMID: 39160132 PMCID: PMC11372838 DOI: 10.1021/acs.molpharmaceut.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The increasing focus on patient centricity in the pharmaceutical industry over the past decade and the changing healthcare landscape, driven by factors such as increased access to information, social media, and evolving patient demands, has necessitated a shift toward greater connectivity and understanding of patients' unique treatment needs. One pharmaceutical technology that has supported these efforts is long acting injectables (LAIs), which lower the administration frequency for the patient's provided convenience, better compliance, and hence better therapeutical treatment for the patients. Furthermore, patients with conditions like the human immunodeficiency virus and schizophrenia have positively expressed the desire for less frequent dosing, such as that obtained through LAI formulations. In this work, a comprehensive analysis of marketed LAIs across therapeutic classes and technologies is conducted. The analysis demonstrated an increasing number of new LAIs being brought to the market, recently most as aqueous suspensions and one as a solution, but many other technology platforms were applied as well, in particular, polymeric microspheres and in situ forming gels. The analysis across the technologies provided an insight into to the physicochemical properties the compounds had per technology class as well as knowledge of the excipients typically used within the individual formulation technology. The principle behind the formulation technologies was discussed with respect to the release mechanism, manufacturing approaches, and the possibility of defining predictive in vitro release methods to obtain in vitro in vivo correlations with an industrial angle. The gaps in the field are still numerous, including better systematic formulation and manufacturing investigations to get a better understanding of potential innovations, but also development of new polymers could facilitate the development of additional compounds. The biggest and most important gaps, however, seem to be the development of predictive in vitro dissolution methods utilizing pharmacopoeia described equipment to enable their use for product development and later in the product cycle for quality-based purposes.
Collapse
Affiliation(s)
- Simone Alidori
- Independent Researcher, Havertown, Pennsylvania 19083, United States
| | - Raju Subramanian
- Gilead Sciences, 333 Lakeside Drive, Foster City, California 94403, United States
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
4
|
Holm R, Lee RW, Glassco J, DiFranco N, Bao Q, Burgess DJ, Lukacova V, Alidori S. Long-Acting Injectable Aqueous Suspensions-Summary From an AAPS Workshop. AAPS J 2023; 25:49. [PMID: 37118621 DOI: 10.1208/s12248-023-00811-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
Through many years of clinical application of long-acting injectables, there is clear proof that this type of formulation does not just provide the patient with convenience, but more importantly a more effective treatment of the medication provided. The formulation approach therefore contains huge untapped potential to improve the quality of life of many patients with a variety of different diseases. This review provides a summary of some of the central talks provided at the workshop with focus on aqueous suspensions and their use as a long-acting injectable. Elements as formulation, manufacturing, in vitro dissolution methods, in vitro and in vivo correlation, in silico modelling provide an insight into some of the current understandings, learnings, and not least gaps in the field.
Collapse
Affiliation(s)
- René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Robert W Lee
- Lubrizol Life Science, Health, CDMO Division, 3894 Courtney St., Bethlehem, Pennsylvania, 18017, USA
| | - Joey Glassco
- Lubrizol Life Science, Health: 9911 Brecksville Road, Cleveland, Ohio, 44141, USA
| | - Nicholas DiFranco
- Lubrizol Life Science, Health: 9911 Brecksville Road, Cleveland, Ohio, 44141, USA
| | - Quanying Bao
- School of Pharmacy, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Diane J Burgess
- School of Pharmacy, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Viera Lukacova
- Simulations Plus, Inc., 42505 10Th Street, Lancaster, California, 93534, USA
| | - Simone Alidori
- GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, Pennsylvania, 19426-2990, USA
| |
Collapse
|