1
|
Yin IX, Udduttulla A, Xu VW, Chen KJ, Zhang MY, Chu CH. Use of Antimicrobial Nanoparticles for the Management of Dental Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:209. [PMID: 39940185 PMCID: PMC11820271 DOI: 10.3390/nano15030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/14/2025]
Abstract
Dental diseases represent a significant global health concern, with traditional treatment methods often proving costly and lacking in long-term efficacy. Emerging research highlights nanoparticles as a promising, cost-effective therapeutic alternative, owing to their unique properties. This review aims to provide a comprehensive overview of the application of antimicrobial and antioxidant nanoparticles in the management of dental diseases. Silver and gold nanoparticles have shown great potential for inhibiting biofilm formation and thus preventing dental caries, gingivitis, and periodontitis. Various dental products can integrate copper nanoparticles, known for their antimicrobial properties, to combat oral infections. Similarly, zinc oxide nanoparticles enhance the antimicrobial performance of dental materials, including adhesives and cements. Titanium dioxide and cerium oxide nanoparticles possess antimicrobial and photocatalytic properties, rendering them advantageous for dental materials and oral hygiene products. Chitosan nanoparticles are effective in inhibiting oral pathogens and reducing inflammation in periodontal tissues. Additionally, curcumin nanoparticles, with their antimicrobial, anti-inflammatory, and antioxidant properties, can enhance the overall performance of dental materials and oral care products. Incorporating these diverse nanoparticles into dental materials and oral care products holds the potential to significantly reduce the risk of infection, control biofilm formation, and improve overall oral health. This review underscores the importance of continued research and development in this promising field to realize the full potential of nanoparticles in dental care.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Hung Chu
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China; (I.X.Y.); (A.U.); (V.W.X.); (K.J.C.); (M.Y.Z.)
| |
Collapse
|
2
|
Park HS, Kim YJ, Chang SJ, Lee HH, Han MR, Lee JH, Kim JS, Kim JB, Shin JS, Lee JH. Optimization of Sodium Iodide-Based Root Filling Material for Clinical Applications: Enhancing Physicochemical Properties. Pharmaceutics 2024; 16:1031. [PMID: 39204376 PMCID: PMC11359924 DOI: 10.3390/pharmaceutics16081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Premature loss of root canal-treated primary teeth has long been a concern in dentistry. To address this, researchers developed a sodium iodide-based root canal-filling material as an alternative to traditional iodoform-based materials. The goal of this study was to improve the physicochemical properties of the sodium iodide-based material to meet clinical use standards. To resolve high solubility issues in the initial formulation, researchers adjusted component ratios and added new ingredients, resulting in a new paste called L5. This study compared L5 with L0 (identical composition minus lanolin) and Vitapex as controls, conducting physicochemical and antibacterial tests. Results showed that L5 met all ISO 6876 standards, demonstrated easier injection and irrigation properties than Vitapex, and exhibited comparable antibacterial efficacy to Vitapex, which is currently used clinically. The researchers conclude that if biological stability is further verified, L5 could potentially be presented as a new option for root canal-filling materials in primary teeth.
Collapse
Affiliation(s)
- Hye-Shin Park
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.-S.P.); (S.-J.C.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Yu-Jin Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (Y.-J.K.); (H.-H.L.)
| | - Soo-Jin Chang
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.-S.P.); (S.-J.C.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Hae-Hyoung Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (Y.-J.K.); (H.-H.L.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Mi-Ran Han
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.-S.P.); (S.-J.C.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Joon-Haeng Lee
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.-S.P.); (S.-J.C.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Jong-Soo Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.-S.P.); (S.-J.C.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Jong-Bin Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.-S.P.); (S.-J.C.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Ji-Sun Shin
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.-S.P.); (S.-J.C.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Jung-Hwan Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (Y.-J.K.); (H.-H.L.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dand-ro, Cheonan 31116, Republic of Korea
| |
Collapse
|
3
|
Wang S, Lv Y. Silica-coated liquid metal nanoparticles with different stiffness for cellular uptake-enhanced tumor photothermal therapy. BIOMATERIALS ADVANCES 2024; 161:213872. [PMID: 38733802 DOI: 10.1016/j.bioadv.2024.213872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Cells can sense the mechanical stimulation of nanoparticles (NPs) and then regulate the cellular uptake process. The enhanced endocytosis efficiency can improve the concentration of NPs in tumor cells significantly, which is the key prerequisite for achieving efficient biological performance. However, the preparation methods of NPs with flexible and tunable stiffness are relatively limited, and the impact of stiffness property on their interaction with tumor cells remains unclear. In this study, soft liquid metal (LM) core was coated with hard silica layer, the obtained core-shell NPs with a wide range of Young's modulus (130.5 ± 25.6 MPa - 1729.2 ± 146.7 MPa) were prepared by adjusting the amount of silica. It was found that the NPs with higher stiffness exhibited superior cellular uptake efficiency and lysosomal escape ability compared to the NPs with lower stiffness. The silica layer not only affected the stiffness, but also improved the photothermal stability of the LM NPs. Both in vitro and in vivo results demonstrated that the NPs with higher stiffness displayed significantly enhanced tumor hyperthermia capability. This work may provide a paradigm for the preparation of NPs with varying stiffness and offer insights into the role of the mechanical property of NPs in their delivery.
Collapse
Affiliation(s)
- Shuai Wang
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, PR China.
| |
Collapse
|
4
|
Vecchio G, Darcos V, Grill SL, Brouillet F, Coppel Y, Duttine M, Pugliara A, Combes C, Soulié J. Spray-dried ternary bioactive glass microspheres: Direct and indirect structural effects of copper-doping on acellular degradation behavior. Acta Biomater 2024; 181:453-468. [PMID: 38723927 DOI: 10.1016/j.actbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Silicate-based bioactive glass nano/microspheres hold significant promise for bone substitution by facilitating osteointegration through the release of biologically active ions and the formation of a biomimetic apatite layer. Cu-doping enhances properties such as pro-angiogenic and antibacterial behavior. While sol-gel methods usually yield homogeneous spherical particles for pure silica or binary glasses, synthesizing poorly aggregated Cu-doped ternary glass nano/microparticles without a secondary CuO crystalline phase remains challenging. This article introduces an alternative method for fabricating Cu-doped ternary microparticles using sol-gel chemistry combined with spray-drying. The resulting microspheres exhibit well-defined, poorly aggregated particles with spherical shapes and diameters of a few microns. Copper primarily integrates into the microspheres as Cu0 nanoparticles and as Cu2+ within the amorphous network. This doping affects silica network connectivity, as calcium and phosphorus are preferentially distributed in the glass network (respectively as network modifiers and formers) or involved in amorphous calcium phosphate nano-domains depending on the doping rate. These differences affect the interaction with simulated body fluid. Network depolymerization, ion release (SiO44-, Ca2+, PO43-, Cu2+), and apatite nanocrystal layer formation are impacted, as well as copper release. The latter is mainly provided by the copper involved in the silica network and not from metal nanoparticles, most of which remain in the microspheres after interaction. This understanding holds promising implications for potential therapeutic applications, offering possibilities for both short-term and long-term delivery of a tunable copper dose. STATEMENT OF SIGNIFICANCE: A novel methodology, scalable to industrial levels, enables the synthesis of copper-doped ternary bioactive glass microparticles by combining spray-drying and sol-gel chemistry. It provides precise control over the copper percentage in microspheres. This study explores the influence of synthesis conditions on the copper environment, notably Cu0 and Cu2+ ratios, characterized by EPR spectroscopy, an aspect poorly described for copper-doped bioactive glass. Additionally, copper indirectly affects silica network connectivity and calcium/phosphorus distribution, as revealed by SSNMR. Multiscale characterization illustrates how these features impact acellular degradation in simulated body fluid, highlighting the therapeutic potential for customizable copper dosing to address short- and long-term needs.
Collapse
Affiliation(s)
- Gabriele Vecchio
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Vincent Darcos
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Sylvain Le Grill
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Fabien Brouillet
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination (LCC), Université de Toulouse, CNRS, UPR 8241, Université Toulouse 3 - Paul Sabatier, Toulouse 31077, France
| | - Mathieu Duttine
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33600, France
| | - Alessandro Pugliara
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France; Centre de MicroCaractérisation Raimond Castaing, Université Toulouse 3 - Paul Sabatier, Toulouse INP, INSA Toulouse, CNRS, 31400 Toulouse, France
| | - Christèle Combes
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Jérémy Soulié
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France.
| |
Collapse
|
5
|
Wang J, Zhang L, Wang K. Bioactive ceramic-based materials: beneficial properties and potential applications in dental repair and regeneration. Regen Med 2024; 19:257-278. [PMID: 39118532 PMCID: PMC11321270 DOI: 10.1080/17460751.2024.2343555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 08/10/2024] Open
Abstract
Bioactive ceramics, primarily consisting of bioactive glasses, glass-ceramics, calcium orthophosphate ceramics, calcium silicate ceramics and calcium carbonate ceramics, have received great attention in the past decades given their biocompatible nature and excellent bioactivity in stimulating cell proliferation, differentiation and tissue regeneration. Recent studies have tried to combine bioactive ceramics with bioactive ions, polymers, bioactive proteins and other chemicals to improve their mechanical and biological properties, thus rendering them more valid in tissue engineering scaffolds. This review presents the beneficial properties and potential applications of bioactive ceramic-based materials in dentistry, particularly in the repair and regeneration of dental hard tissue, pulp-dentin complex, periodontal tissue and bone tissue. Moreover, greater insights into the mechanisms of bioactive ceramics and the development of ceramic-based materials are provided.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| |
Collapse
|
6
|
Xu VW, Nizami MZI, Yin IX, Niu JY, Yu OY, Chu CH. Copper Materials for Caries Management: A Scoping Review. J Funct Biomater 2023; 15:10. [PMID: 38248677 PMCID: PMC10817259 DOI: 10.3390/jfb15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
This study comprehensively reviewed the types, properties and potential applications of copper materials for caries management. Two researchers independently searched English publications using PubMed, Scopus and Web of Science. They screened the titles and abstracts of publications presenting original studies for review. They included 34 publications on copper materials, which were categorized as copper and copper alloy materials (13/34, 38%), copper salt materials (13/34, 38%) and copper oxide materials (8/34, 24%). All reported copper materials inhibited the growth of cariogenic bacteria such as Streptococcus mutans and Candida albicans. The materials could be doped into topical agents, restorative fillers, dental adhesives, drinking water, dental implants, orthodontic appliances, mouthwash and sugar. Most publications (29/34, 83%) were laboratory studies, five (5/34, 14%) were animal studies and only one paper (1/34, 3%) was clinical research. In conclusion, copper and copper alloy materials, copper salt materials and copper oxide materials have an antimicrobial property that inhibits cariogenic bacteria and Candida albicans. These copper materials may be incorporated into dental materials and even drinking water and sugar for caries prevention. Most publications are laboratory studies. Further clinical studies are essential to validate the effectiveness of copper materials in caries prevention.
Collapse
Affiliation(s)
- Veena Wenqing Xu
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; (V.W.X.); (M.Z.I.N.); (I.X.Y.); (J.Y.N.); (O.Y.Y.)
| | - Mohammed Zahedul Islam Nizami
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; (V.W.X.); (M.Z.I.N.); (I.X.Y.); (J.Y.N.); (O.Y.Y.)
- Department of Mineralized Tissue Biology and Bioengineering, The Forsyth Institute, Harvard University, Cambridge, MA 02138, USA
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; (V.W.X.); (M.Z.I.N.); (I.X.Y.); (J.Y.N.); (O.Y.Y.)
| | - John Yun Niu
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; (V.W.X.); (M.Z.I.N.); (I.X.Y.); (J.Y.N.); (O.Y.Y.)
| | - Ollie Yiru Yu
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; (V.W.X.); (M.Z.I.N.); (I.X.Y.); (J.Y.N.); (O.Y.Y.)
| | - Chun-Hung Chu
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; (V.W.X.); (M.Z.I.N.); (I.X.Y.); (J.Y.N.); (O.Y.Y.)
| |
Collapse
|
7
|
Chang SJ, Kim YJ, Vu HT, Choi JM, Park JH, Shin SJ, Dashnyam K, Knowles JC, Lee HH, Jun SK, Han MR, Lee JH, Kim JS, Shin JS, Kim JB, Lee JH. Physicochemical, Pre-Clinical, and Biological Evaluation of Viscosity Optimized Sodium Iodide-Incorporated Paste. Pharmaceutics 2023; 15:pharmaceutics15041072. [PMID: 37111558 PMCID: PMC10143732 DOI: 10.3390/pharmaceutics15041072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This study aimed to investigate the impact of different viscosities of silicone oil on the physicochemical, pre-clinical usability, and biological properties of a sodium iodide paste. Six different paste groups were created by mixing therapeutic molecules, sodium iodide (D30) and iodoform (I30), with calcium hydroxide and one of the three different viscosities of silicone oil (high (H), medium (M), and low (L)). The study evaluated the performance of these groups, including I30H, I30M, I30L, D30H, D30M, and D30L, using multiple parameters such as flow, film thickness, pH, viscosity, and injectability, with statistical analysis (p < 0.05). Remarkably, the D30L group demonstrated superior outcomes compared to the conventional iodoform counterpart, including a significant reduction in osteoclast formation, as examined through TRAP, c-FOS, NFATc1, and Cathepsin K (p < 0.05). Additionally, mRNA sequencing showed that the I30L group exhibited increased expression of inflammatory genes with upregulated cytokines compared to the D30L group. These findings suggest that the optimized viscosity of the sodium iodide paste (D30L) may lead to clinically favorable outcomes, such as slower root resorption, when used in primary teeth. Overall, the results of this study suggest that the D30L group shows the most satisfactory outcomes, which may be a promising root-filling material that could replace conventional iodoform-based pastes.
Collapse
Affiliation(s)
- Soo-Jin Chang
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea (J.-S.S.)
| | - Yu-Jin Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Huong Thu Vu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Ji-Myung Choi
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea (J.-S.S.)
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Seong-Jin Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Drug Research Institute, Mongolian Pharmaceutical University & Monos Group, Ulaanbaatar 14250, Mongolia
| | - Jonathan C. Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Hae-Hyoung Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
| | - Soo-Kyung Jun
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Department of Dental Hygiene, Hanseo University, 46 Hanseo 1ro, Seosan 31962, Republic of Korea
| | - Mi-Ran Han
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea (J.-S.S.)
| | - Joon-Haeng Lee
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea (J.-S.S.)
| | - Jong-Soo Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea (J.-S.S.)
| | - Ji-Sun Shin
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea (J.-S.S.)
| | - Jong-Bin Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea (J.-S.S.)
- Correspondence: (J.-B.K.); (J.-H.L.)
| | - Jung-Hwan Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandaero, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
- Correspondence: (J.-B.K.); (J.-H.L.)
| |
Collapse
|
8
|
Almuqrin A, Kaur IP, Walsh LJ, Seneviratne CJ, Zafar S. Amelioration Strategies for Silver Diamine Fluoride: Moving from Black to White. Antibiotics (Basel) 2023; 12:298. [PMID: 36830209 PMCID: PMC9951939 DOI: 10.3390/antibiotics12020298] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Topical cariostatic agents have become a reasonable alternative for managing dental caries in young children. Silver diamine fluoride (SDF) is a practical topical approach to arrest caries and avoid extensive and risky dental treatment. However, the literature demonstrates a parental hesitation towards accepting SDF because of black unaesthetic tooth discolouration following application. The rapid oxidation of ionic silver darkens demineralised tooth structure permanently. In this regard, nano-metallic antimicrobials could augment or substitute for silver, and thereby enhance SDF aesthetic performance. Recently, biomedical research has drawn attention to selenium nanoparticles (SeNPs) due to their antimicrobial, antioxidant, and antiviral potencies. Various in vitro studies have examined the effect of SeNPs on the virulence of bacteria. This narrative review explores practical issues when using SDF and suggests future directions to develop it, focusing on antimicrobial metals. Several methods are described that could be followed to reduce the discolouration concern, including the use of nanoparticles of silver, of silver fluoride, or of selenium or other metals with antimicrobial actions. There could also be value in using remineralising agents other than fluoride, such as NPs of hydroxyapatite. There could be variations made to formulations in order to lower the levels of silver and fluoride in the SDF or even to replace one or both of the silver and fluoride components completely. Moreover, since oxidation processes appear central to the chemistry of the staining, adding SeNPs which have antioxidant actions could have an anti-staining benefit; SeNPs could be used for their antimicrobial actions as well. Future research should address the topic of selenium chemistry to optimise how SeNPs would be used with or in place of ionic silver. Incorporating other antimicrobial metals as nanoparticles should also be explored, taking into account the optimal physicochemical parameters for each of these.
Collapse
Affiliation(s)
| | | | - Laurence J. Walsh
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | | | | |
Collapse
|
9
|
Zinc-modified phosphate-based glass micro-filler improves Candida albicans resistance of auto-polymerized acrylic resin without altering mechanical performance. Sci Rep 2022; 12:19456. [PMID: 36376540 PMCID: PMC9663707 DOI: 10.1038/s41598-022-24172-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colonization of auto-polymerized acrylic resin by pathogenic Candida albicans is a common problem for denture users. In this study, zinc-modified phosphate-based glass was introduced into an auto-polymerized acrylic resin at concentrations of 3, 5, and 7 wt.%. The mechanical or physical properties (flexural strength, elastic modulus, microhardness, and contact angle), surface morphology of the resultant materials, and the antimicrobial effect on C. albicans were investigated. There were no statistical differences in the mechanical properties between the control and the zinc-modified phosphate-based glass samples (p > 0.05); however, the number of C. albicans colony-forming units was significantly lower in the control group (p < 0.05). Scanning electron microscopy revealed that C. albicans tended not to adhere to the zinc-modified-phosphate-based glass samples. Thus, the zinc-modified materials retained the advantageous mechanical properties of unaltered acrylic resins, while simultaneously exhibiting a strong antimicrobial effect in vitro.
Collapse
|
10
|
Seredin P, Goloshchapov D, Kashkarov V, Nesterov D, Ippolitov Y, Ippolitov I, Vongsvivut J. Effect of Exo/Endogenous Prophylaxis Dentifrice/Drug and Cariogenic Conditions of Patient on Molecular Property of Dental Biofilm: Synchrotron FTIR Spectroscopic Study. Pharmaceutics 2022; 14:pharmaceutics14071355. [PMID: 35890251 PMCID: PMC9320832 DOI: 10.3390/pharmaceutics14071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Objectives: This study is the first one to investigate the molecular composition of the dental biofilm during the exogenous and endogenous prophylaxis stages (use of dentifrice/drug) of individuals with different cariogenic conditions using molecular spectroscopy methods. (2) Materials and Methods: The study involved 100 participants (50 males and 50 females), aged 18–25 years with different caries conditions. Biofilm samples were collected from the teeth surface of all participants. The molecular composition of biofilms was investigated using synchrotron infrared microspectroscopy. Changes in the molecular composition were studied through calculation and analysis of ratios between organic and mineral components of biofilm samples. (3) Results: Based on the data obtained by synchrotron FTIR, calculations of organic and mineral component ratios, and statistical analysis of the data, we were able to assess changes occurring in the molecular composition of the dental biofilm. Variations in the phosphate/protein/lipid, phosphate/mineral, and phospholipid/lipid ratios and the presence of statistically significant intra- and inter-group differences in these ratios indicate that the mechanisms of ion adsorption, compounds and complexes arriving from oral fluid into dental biofilm during exo/endogenous prophylaxis, differ for patients in norm and caries development. (4) Conclusions: The conformational environment and charge interaction in the microbiota and the electrostatic state of the biofilm protein network in patients with different cariogenic conditions play an important role. (5) Clinical Significance: Understanding the changes that occur in the molecular composition of the dental biofilm in different oral homeostasis conditions will enable successful transition to a personalised approach in dentistry and high-tech healthcare.
Collapse
Affiliation(s)
- Pavel Seredin
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (D.G.); (V.K.); (D.N.)
- Scientific and Educational Center “Nanomaterials and Nanotechnologies”, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
- Correspondence:
| | - Dmitry Goloshchapov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (D.G.); (V.K.); (D.N.)
| | - Vladimir Kashkarov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (D.G.); (V.K.); (D.N.)
| | - Dmitry Nesterov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia; (D.G.); (V.K.); (D.N.)
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia; (Y.I.); (I.I.)
| | - Ivan Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia; (Y.I.); (I.I.)
| | | |
Collapse
|