1
|
Cho DY, Lee JG, Kim MJ, Cho HJ, Cho JH, Kim KS. Approaches for Inclusion Complexes of Ezetimibe with Cyclodextrins: Strategies for Solubility Enhancement and Interaction Analysis via Molecular Docking. Int J Mol Sci 2025; 26:1686. [PMID: 40004150 PMCID: PMC11855275 DOI: 10.3390/ijms26041686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to improve the solubility of ezetimibe (EZT), which has low aqueous solubility, by preparing complexes using β-cyclodextrin (β-CD) derivatives. Phase solubility studies and Job's plot confirmed a high apparent stability constant for EZT with β-CD and even higher constants with its derivatives, establishing a 1:1 stoichiometric ratio. The composites were prepared using spray drying over a range of molar ratios, and their physicochemical properties were evaluated using techniques such as scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FT-IR). Saturation solubility and in vitro dissolution tests revealed that solubility increased with higher CD molar ratios. EZT/RM-β-CD inclusion complexes (ICs) and EZT/DM-β-CD ICs exhibited a similar solubility, which was greater than that of EZT/HP-β-CD ICs and EZT/SBE-β-CD ICs (where RM, DM, HP, and SEB represent H, CH3, -CH2-CHOH-CH3 and -(CH2)4-SO3Na synthetic derivatives, respectively). Most complexes, except for EZT/SBE-β-CD at 1:2 or higher ratios, showed superior solubility compared with EZT powder and commercial products. Molecular docking simulations confirmed EZT inclusion within the CD, revealing hydrogen bonds and binding energies that aligned with solubility trends. These findings suggest that EZT complexes with β-CD derivatives significantly improve solubility, highlighting their potential for developing more effective oral solid formulations for hyperlipidemia treatment.
Collapse
Affiliation(s)
- Dae-Yeong Cho
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| | - Jeong-Gyun Lee
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| | - Moon-Jung Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| | - Hyuk-Jun Cho
- Department of Innovative Drug Discovery and Development, College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea;
| | - Jung-Hyun Cho
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Kyeong-Soo Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| |
Collapse
|
2
|
Queiroz LHS, Barros RS, de Sousa FF, Lage MR, Sarraguça MC, Ribeiro PRS. Preparation and Characterization of a Rifampicin Coamorphous Material with Tromethamine Coformer: An Experimental-Theoretical Study. Mol Pharm 2024; 21:1272-1284. [PMID: 38361428 DOI: 10.1021/acs.molpharmaceut.3c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Rifampicin (RIF) is an antibiotic used to treat tuberculosis and leprosy. Even though RIF is a market-available drug, it has a low aqueous solubility, hindering its bioavailability. Among the strategies for bioavailability improvement of poorly soluble drugs, coamorphous systems have been revealed as an alternative in the increase of the aqueous solubility of drug systems and at the same time also increasing the amorphous state stability and dissolution rate when compared with the neat drug. In this work, a new coamorphous form from RIF and tromethamine (TRIS) was synthesized by slow evaporation. Structural, electronic, and thermodynamic properties and solvation effects, as well as drug-coformer intermolecular interactions, were studied through density functional theory (DFT) calculations. Powder X-ray diffraction (PXRD) data allowed us to verify the formation of a new coamorphous. In addition, the DFT study indicates a possible intermolecular interaction by hydrogen bonds between the available amino and carbonyl groups of RIF and the hydroxyl and amino groups of TRIS. The theoretical spectra obtained are in good agreement with the experimental data, suggesting the main interactions occurring in the formation of the coamorphous system. PXRD was used to study the physical stability of the coamorphous system under accelerated ICH conditions (40 °C and 75% RH), indicating that the material remained in an amorphous state up to 180 days. The thermogravimetry result of this material showed a good thermal stability up to 153 °C, and differential scanning calorimetry showed that the glass temperature (Tg) was at 70.0 °C. Solubility studies demonstrated an increase in the solubility of RIF by 5.5-fold when compared with its crystalline counterpart. Therefore, this new material presents critical parameters that can be considered in the development of new coamorphous formulations.
Collapse
Affiliation(s)
- Luís H S Queiroz
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
| | - Ranna S Barros
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
| | - Francisco F de Sousa
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará (UFPA), Belém, Pará 65.075-110, Brazil
| | - Mateus R Lage
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
- Coordenação do Curso de Ciência e Tecnologia, Centro de Ciências de Balsas, Universidade Federal do Maranhão (UFMA), Balsas, Maranhão 65.800-000, Brazil
| | - Mafalda C Sarraguça
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Paulo R S Ribeiro
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
| |
Collapse
|
3
|
Wang H, Zhao P, Ma R, Jia J, Fu Q. Drug-drug co-amorphous systems: An emerging formulation strategy for poorly water-soluble drugs. Drug Discov Today 2024; 29:103883. [PMID: 38219970 DOI: 10.1016/j.drudis.2024.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Overcoming the poor water solubility of small-molecule drugs is a major challenge in the development of clinical pharmaceuticals. Amorphization of crystalline drugs is a highly effective strategy to improve their aqueous solubility. However, amorphous drugs are thermodynamically unstable and likely to crystallize during manufacturing and storage. Recently, drug-drug co-amorphous systems have emerged as a novel strategy to not only enable enhanced dissolution and physical stability of the individual drugs within the system but also to provide a strategy for combination therapy of the same or different clinical indications. This review serves to highlight advances in the methods used to manufacture and characterize drug-drug co-amorphous systems, summarize drug-drug co-amorphous applications reported in recent decades, and provide an outlook on future possibilities and perspectives.
Collapse
Affiliation(s)
- Hongge Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ruilong Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jirun Jia
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
4
|
Shi Q, Wang Y, Moinuddin SM, Feng X, Ahsan F. Co-amorphous Drug Delivery Systems: a Review of Physical Stability, In Vitro and In Vivo Performance. AAPS PharmSciTech 2022; 23:259. [PMID: 36123515 DOI: 10.1208/s12249-022-02421-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
Over the past few decades, co-amorphous solids have been used as a promising approach for delivering poorly water-soluble drugs. Co-amorphous solids, comprising pharmacologically relevant drug substances or excipients, improve physical stability, solubility, dissolution, and bioavailability compared with single amorphous ingredients. In this review, we have summarized recent advances in physical stability and in vitro and in vivo performances of co-amorphous solids. We have highlighted the role of molar ratio, molecular interaction, and mobility that affects the physical stability of co-amorphous solids. This review delves deep as to how co-amorphous solids affect the physicochemical properties in vitro and in vivo. We also described the challenges to the formulation of co-amorphous solids. A better understanding of the mechanisms of the physical stability, in vitro and in vivo performance of co-amorphous solids, and proper selection of the co-former is likely to expedite the development of robust co-amorphous-based pharmaceutical formulations and can address the challenges associated with the delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Sakib M Moinuddin
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA.,East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Mather, California, 95655, USA
| | - Xiaodong Feng
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA
| | - Fakhrul Ahsan
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California, 95757, USA. .,East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Mather, California, 95655, USA.
| |
Collapse
|
5
|
Amorphous and Co-Amorphous Olanzapine Stability in Formulations Intended for Wet Granulation and Pelletization. Int J Mol Sci 2022; 23:ijms231810234. [PMID: 36142179 PMCID: PMC9499418 DOI: 10.3390/ijms231810234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The preparation of amorphous and co-amorphous systems (CAMs) effectively addresses the solubility and bioavailability issues of poorly water-soluble chemical entities. However, stress conditions imposed during common pharmaceutical processing (e.g., tableting) may cause the recrystallization of the systems, warranting close stability monitoring throughout production. This work aimed at assessing the water and heat stability of amorphous olanzapine (OLZ) and OLZ-CAMs when subject to wet granulation and pelletization. Starting materials and products were characterized using calorimetry, diffractometry and spectroscopy, and their performance behavior was evaluated by dissolution testing. The results indicated that amorphous OLZ was reconverted back to a crystalline state after exposure to water and heat; conversely, OLZ-CAMs stabilized with saccharin (SAC), a sulfonic acid, did not show any significant loss of the amorphous content, confirming the higher stability of OLZ in the CAM. Besides resistance under the processing conditions of the dosage forms considered, OLZ-CAMs presented a higher solubility and dissolution rate than the respective crystalline counterpart. Furthermore, in situ co-amorphization of OLZ and SAC during granule production with high fractions of water unveils the possibility of reducing production steps and associated costs.
Collapse
|
6
|
Sun Y, Xu M, Wang C, Guan S, Wang L, Cong B, Zhu W, Xu Y. Low-molecular-weight fucoidan bidirectionally regulates lipid uptake and cholesterol efflux through the p38 MAPK phosphorylation. Int J Biol Macromol 2022; 220:371-384. [PMID: 35970372 DOI: 10.1016/j.ijbiomac.2022.08.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis (AS) is the pathological basis of many cardiovascular and cerebrovascular diseases, in which macrophage-derived foam cells are the critical step and a typical pathological feature of early atherosclerosis. We previously confirmed that low-molecular-weight fucoidan (LMWF) had a good anti-AS effect, but the mechanism is still unclear. Here with aim to investigate the inhibitory effect of LMWF on foam cells and its molecular mechanism. Oil red O staining showed that LMWF effectively alleviated lipid accumulation and the formation of foam cells. Flow cytometry detection showed that LMWF promoted foam cells apoptosis. In addition, immunofluorescence showed that LMWF inhibited macrophage scavenger receptor A1 (SR-A1)-mediated lipid uptake and promoted ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol outflow. Western blot showed that LMWF downregulated SR-A1 protein expression and upregulated ABCA1 protein expression by inhibiting p38 mitogen activated protein kinase (p38MAPK) phosphorylation. Moreover, the mRNA transcriptions of Stat1, Elk-1, and Myc were downregulated when treated with LMWF. It concluded that, LMWF achieved bidirectional regulation of SR-A1 and ABCA1, then prevented the formation of foam cells, finally ameliorated the development of AS.
Collapse
Affiliation(s)
- Yu Sun
- Medical College, Qingdao University, Qingdao 266071, China
| | - Ming Xu
- Medical College, Qingdao University, Qingdao 266071, China
| | - Changxin Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Shulong Guan
- Department of Surgery, Qingdao Shinan District People's Hospital, Qingdao 266520, China
| | - Lina Wang
- Department of Blood Transfusion, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shangdong University, Qingdao 266035, China
| | - Beibei Cong
- Central Laboratory, Qingdao Stomatological Hospital, Qingdao 266001, China.
| | - Wenlong Zhu
- Business School, Qingdao University of Technology, Qingdao 266520, China.
| | - Yingjie Xu
- Central Laboratory, Qingdao Stomatological Hospital, Qingdao 266001, China.
| |
Collapse
|