1
|
Chidchai P, Singpanna K, Pengnam S, Charoenying T, Pamornpathomkul B, Patrojanasophon P, Chaksmithanont P, Pornpitchanarong C. Experimental Optimization of Tannic Acid-Crosslinked Hydrogels for Neomycin Delivery in Infected Wounds. Polymers (Basel) 2025; 17:770. [PMID: 40292644 PMCID: PMC11946848 DOI: 10.3390/polym17060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Wound infections pose a significant challenge in healthcare settings due to prolonged healing times and the emergence of antibiotic-resistant bacteria. Traditional wound dressings often fail to provide sustained drug release, optimal moisture retention, and effective antibacterial protection, leading to suboptimal therapeutic outcomes. This study aimed to optimize and develop neomycin-integrated hydrogels crosslinked via tannic acid (TA) for the treatment of infectious wounds. The hydrogels were optimized using a central composite experimental design. The amounts of polyvinyl alcohol (PVA, 10-20% w/w) and polyvinylpyrrolidone (PVP, 5-20% w/w) were varied and mixed with a fixed concentration of TA (1% w/w) as a crosslinker. The water content (%), water absorption (%), erosion (%), water vapor transmission rate (WVTR), and the mechanical properties of the hydrogels were evaluated. Neomycin was integrated in the optimized hydrogel, and the antibacterial activity against Staphylococcus aureus was studied using a time-kill analysis method. The optimal hydrogel formula contained PVA and PVP at a ratio of 20:19.89 by weight. The resulting hydrogel possessed good physical and mechanical properties and had a water content of 71.86%, water absorption of 124.96%, minimal erosion of 33.08%, and optimal WVTR of 5567 g/m2/24 h. Furthermore, the hydrogel showed desirable elasticity, with a Young's modulus of 474.81 Pa and a tensile strength that could resist breakage upon application. The neomycin-integrated hydrogels inhibited bacterial growth comparably to the neomycin solution (0.5% w/v). Therefore, TA was proven to be a promising natural crosslinker and the optimized hydrogel was demonstrated to be a propitious platform for neomycin cutaneous application, and which could be used to treat infected wounds in the future.
Collapse
Affiliation(s)
- Peerapat Chidchai
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Kanokwan Singpanna
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thapakorn Charoenying
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Boonnada Pamornpathomkul
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prin Chaksmithanont
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
2
|
Suriyaamporn P, Pornpitchanarong C, Charoenying T, Dechsri K, Ngawhirunpat T, Opanasopit P, Pamornpathomkul B. Artificial intelligence-driven hydrogel microneedle patches integrating 5-fluorouracil inclusion complex-loaded flexible pegylated liposomes for enhanced non-melanoma skin cancer treatment. Int J Pharm 2025; 669:125072. [PMID: 39675535 DOI: 10.1016/j.ijpharm.2024.125072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The current study focused on the development of crosslinked hydrogel microneedle patches (cHMNs) incorporating 5-FU-hydroxypropyl beta-cyclodextrin inclusion complex-loaded flexible PEGylated liposomes (5-FU-HPβCD-loaded FP-LPs) to enhance treatment efficacy and reduce drug toxicity. The research utilized artificial intelligence (AI) algorithms to design, optimize, and evaluate the cHMNs. Various AI models were assessed for accuracy, with metrics such as root mean square error and coefficient of determination guiding the selection of the most effective formulation. The physicochemical and mechanical properties, swelling behavior, in vitro skin permeation, and safety of the chosen cHMNs were tested. The results demonstrated that the 5-FU-HPβCD-loaded FP-LPs, stabilized with limonene, had an optimal particle size of 36.23 ± 2.42 nm, narrow size distribution, and zeta potential of -10.24 ± 0.37 mV, with high encapsulation efficiency. The cHMNs exhibited a conical needle shape with sufficient mechanical strength to penetrate the stratum corneum up to approximately 467.87 ± 65.12 μm. The system provided a high skin permeation rate of 41.78 ± 4.26 % and significant drug accumulation in the skin. Additionally, the formulation was proven safe in cell culture while effectively inhibiting cancer growth and promoting apoptosis. This study highlights the potential of AI-enhanced cHMNs for delivering 5-FU-HPβCD-loaded FP-LPs transdermally, offering a promising new treatment avenue for non-melanoma skin cancers.
Collapse
Affiliation(s)
- Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thapakorn Charoenying
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Koranat Dechsri
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Boonnada Pamornpathomkul
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
3
|
Suriyaamporn P, Dechsri K, Charoenying T, Ngawhirunpat T, Rojanarata T, Patrojanasophon P, Opanasopit P, Pamornpathomkul B. Multiple strategies approach: A novel crosslinked hydrogel forming chitosan-based microneedles chemowrap patch loaded with 5-fluorouracil liposomes for chronic wound cancer treatment. Int J Biol Macromol 2024; 279:134973. [PMID: 39182897 DOI: 10.1016/j.ijbiomac.2024.134973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Untreated or poorly managed chronic wounds can progress to skin cancer. Topically applied 5-fluorouracil (5-FU), a nonspecific cytostatic agent, can cause various side effects. Its high polarity also results in low cell membrane affinity and bioavailability. Hydrogel, used for its occlusive effect, is one platform for treating chronic wounds combined with PEGylated liposomes (LPs), developed to increase drug-skin affinity. This research aimed to develop a novel hydrogel forming chitosan-based microneedles (HFM) chemowrap patch containing 5-FU PEGylated LPs, improving 5-FU efficiency for pre-carcinogenic and carcinogenic skin lesions. The results indicated that the 5-FU-PEGylated LPs-loaded HFM chemowrap patch exhibited desirable physical and mechanical characteristics with complete penetration ability. Furthermore, in vivo skin permeation studies demonstrated the highest percentage of 5-FU permeated the skin (42.06 ± 11.82 %) and skin deposition (75.90 ± 1.13 %) compared to the other treatments, with demonstrated superior percentages of complete wound healing in in vivo (47.00 ± 5.77 % wound healing at day 7) and in NHF cells (92.79 ± 7.15 % at 48 h). Furthermore, 5-FU-PEGylated LPs-loaded HFM chemowrap patches exhibit efficient anticancer activity while maintaining safety for normal cells. The results also show that the developed formulation of a 5-FU-PEGylated LPs-loaded HFM chemowrap patch could enhance apoptosis higher than that of the 5-FU solution. Consequently, 5-FU PEGylated LPs-loaded HFM chemowrap patch represented a promising drug delivery approach for treating pre-carcinogenic and carcinogenic skin lesions.
Collapse
Affiliation(s)
- Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Koranat Dechsri
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thapakorn Charoenying
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Boonnada Pamornpathomkul
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
4
|
Teng J, Zhao W, Zhang S, Yang D, Liu Y, Huang R, Ma Y, Jiang L, Wei H, Zhang J, Chen J. Injectable nanoparticle-crosslinked xyloglucan/ε-poly-l-lysine composite hydrogel with hemostatic, antimicrobial, and angiogenic properties for infected wound healing. Carbohydr Polym 2024; 336:122102. [PMID: 38670773 DOI: 10.1016/j.carbpol.2024.122102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Skin wounds are susceptible to infection, leading to severe inflammatory reactions that can progress to chronic wounds, ultimately causing significant physical and mental distress to the patient. In this study, we propose an injectable composite hydrogel achieved through one-pot gelation of oxidized xyloglucan (OXG), cationic polyamide ε-poly-l-lysine (EPL), and surface amino-rich silicon nanoparticles (SiNPs). OXG exhibits commendable anti-inflammatory properties and provides crosslinking sites. SiNPs serve as mechanically reinforced crosslinkers, facilitating the construction of a dynamic Schiff base network. SiNPs significantly reduced the gelation time to 3 s and tripled the storage modulus of the hydrogels. Additionally, the combination of EPL and SiNPs demonstrated synergistic antimicrobial activity against both S. aureus and E. coli. Notably, the hydrogel effectively halted liver bleeding within 30 s. The hydrogel demonstrated outstanding shear-thinning and self-healing properties, crucial considerations for the design of injectable hydrogels. Furthermore, its efficacy was evaluated as a wound dressing in a mouse model with S. aureus infection. The results indicated that, compared to commercial products, the hydrogel exhibited a shorter wound healing time, decreased inflammation, thinner epithelium, increased hair follicles, enhanced neovascularization, and more substantial collagen deposition. These findings strongly suggest the promising potential of the proposed hydrogel as an effective wound dressing for the treatment of infected wounds.
Collapse
Affiliation(s)
- Jingmei Teng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China; Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Wei Zhao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Shengyu Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Dan Yang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Yu Liu
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Rongjian Huang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Yuxi Ma
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Lei Jiang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China; Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Hua Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jiantao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China; Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China.
| | - Jing Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| |
Collapse
|
5
|
González-Torres M, Martínez-Mata R, Ruvalcaba-Paredes EK, Del Real A, Leyva-Gómez G, Maciel-Cerda A. Preparation of xyloglucan-grafted poly(N-hydroxyethyl acrylamide) copolymer by free-radical polymerization for in vitro evaluation of human dermal fibroblasts. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:20. [PMID: 38526669 PMCID: PMC10963570 DOI: 10.1007/s10856-024-06783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/04/2024] [Indexed: 03/27/2024]
Abstract
Xyloglucan is a rigid polysaccharide that belongs to the carbohydrate family. This hemicellulose compound has been widely used in biomedical research because of its pseudoplastic, mucoadhesive, mucomimetic, and biocompatibility properties. Xyloglucan is a polyose with no amino groups in its structure, which also limits its range of applications. It is still unknown whether grafting hydrophilic monomers onto xyloglucan can produce derivatives that overcome these shortcomings. This work aimed to prepare the first copolymers in which N-hydroxyethyl acrylamide is grafted onto tamarind xyloglucan by free-radical polymerization. The biocompatibility of these structures in vitro was evaluated using human dermal fibroblasts. Gamma radiation-induced graft polymerization was employed as an initiator by varying the radiation dose from 5-25 kGy. The structure of the graft copolymer, Xy-g-poly(N-hydroxyethyl acrylamide), was verified by thermal analysis, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The findings indicate that the degree of grafting and the cytotoxicity/viability of the xyloglucan-based copolymer were independent of dose. Notably, the grafted galactoxyloglucan exhibited efficient support for human dermal fibroblasts, showing heightened proliferative capacity and superior migration capabilities compared to the unmodified polymer. This copolymer might have the potential to be used in skin tissue engineering.
Collapse
Affiliation(s)
- Maykel González-Torres
- CONAHCYT & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra,", Ciudad de Mexico, 14389, Mexico
| | - Ricardo Martínez-Mata
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, 04510, Mexico DF, Mexico
| | - Erika Karina Ruvalcaba-Paredes
- CONAHCYT & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra,", Ciudad de Mexico, 14389, Mexico
| | - Alicia Del Real
- Centro de Física Aplica y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, 76230, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, 04510, Mexico
| | - Alfredo Maciel-Cerda
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, 04510, Mexico DF, Mexico.
| |
Collapse
|
6
|
Zhang S, Liu H, Li W, Liu X, Ma L, Zhao T, Ding Q, Ding C, Liu W. Polysaccharide-based hydrogel promotes skin wound repair and research progress on its repair mechanism. Int J Biol Macromol 2023; 248:125949. [PMID: 37494997 DOI: 10.1016/j.ijbiomac.2023.125949] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Polysaccharides, being a natural, active, and biodegradable polymer, have garnered significant attention due to their exceptional properties. These properties make them ideal for creating multifunctional hydrogels that can be used as wound dressings for skin injuries. Polysaccharide hydrogel has the ability to both simulate the natural extracellular matrix, promote cell proliferation, and provide a suitable environment for wound healing while protecting it from bacterial invasion. Polysaccharide hydrogels offer a promising solution for repairing damaged skin. This review provides an overview of the mechanisms involved in skin damage repair and emphasizes the potential of polysaccharide hydrogels in this regard. For different skin injuries, polysaccharide hydrogels can play a role in promoting wound healing. However, we still need to conduct more research on polysaccharide hydrogels to provide more possibilities for skin damage repair.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Hongyuan Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lina Ma
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Ting Zhao
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China.
| |
Collapse
|
7
|
Cao X, Sun L, Xu D, Miao S, Li N, Zhao Y. Melanin-Integrated Structural Color Hybrid Hydrogels for Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300902. [PMID: 37211710 PMCID: PMC10401079 DOI: 10.1002/advs.202300902] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/13/2023] [Indexed: 05/23/2023]
Abstract
Hydrogel patches have outstanding values in wound treatment; challenges in this field are concentrated on developing functional and intelligent hydrogel patches with new antibacterial strategies for improving healing process. Herein, a novel melanin-integrated structural color hybrid hydrogel patches for wound healing is presented. Such hybrid hydrogel patches are fabricated by infusing asiatic acid (AA)-loaded low melting-point agarose (AG) pregel into the melanin nanoparticles (MNPs)-integrated fish gelatin inverse opal film. In this system, MNPs not only impart the hybrid hydrogels with properties of photothermal antibacterial and antioxidant, but also improve the visibility of structural colors by providing an inherent dark background. Besides, the photothermal effect of MNPs under near-infrared irradiation can also trigger liquid transformation of AG component in hybrid patch, resulting in the controllable release of its loaded proangiogenic AA. Attracting, this drug release induced refractive index variations in the patch can be detected as visible structural color shifting, which can be used to monitor their delivery processes. Benefiting from these features, the hybrid hydrogel patches are demonstrated to achieve excellent therapeutic effects for in vivo wound treatment. Thus, it is believed that the proposed melanin-integrated structural color hybrid hydrogels are valuable as multifunctional patches for clinical applications.
Collapse
Affiliation(s)
- Xinyue Cao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Dongyu Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Shuangshuang Miao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ning Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
8
|
Ferreira LMDMC, Bandeira EDS, Gomes MF, Lynch DG, Bastos GNT, Silva-Júnior JOC, Ribeiro-Costa RM. Polyacrylamide Hydrogel Containing Calendula Extract as a Wound Healing Bandage: In Vivo Test. Int J Mol Sci 2023; 24:3806. [PMID: 36835221 PMCID: PMC9968031 DOI: 10.3390/ijms24043806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 02/17/2023] Open
Abstract
Hydrogel is a biomaterial widely used in several areas of industry due to its great biocompatibility and adaptability to biological tissues. In Brazil, the Calendula plant is approved by the Ministry of Health as a medicinal herb. It was chosen to be incorporated in the hydrogel formulation because of its anti-inflammatory, antiseptic and healing effects. This study synthesized polyacrylamide hydrogel containing calendula extract and evaluated its efficiency as a bandage for wound healing. The hydrogels were prepared using free radical polymerization and characterized by Scanning Electron Microscopy, swelling analysis and mechanical properties by texturometer. The morphology of the matrices showed large pores and foliaceous structure. In vivo testing, as well as the evaluation of acute dermal toxicity, was conducted using male Wistar rats. The tests indicated efficient collagen fiber production, improved skin repair and no signs of dermal toxicity. Thus, the hydrogel presents compatible properties for the controlled release of calendula extract used as a bandage to promote cicatrization.
Collapse
Affiliation(s)
| | - Elanne de Sousa Bandeira
- Laboratory of Nanotechnology Pharmaceutical, Institute of Health Sciences, Federal University of Pará, Rua Augusto Corrêa 01, Belém 66075-110, PA, Brazil
| | - Maurício Ferreira Gomes
- Laboratory of Neuroinflammation, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa 01, Belém 66075-110, PA, Brazil
| | - Desireé Gyles Lynch
- School of Pharmacy, College of Health Sciences, University of Technology, 237 Old Hope Road, Kinston 6, Jamaica
| | - Gilmara Nazareth Tavares Bastos
- Laboratory of Neuroinflammation, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa 01, Belém 66075-110, PA, Brazil
| | - José Otávio Carréra Silva-Júnior
- Laboratory R&D Pharmaceutical and Cosmetic, Institute of Health Sciences, Federal University of Pará, Rua Augusto Corrêa 01, Belém 66075-110, PA, Brazil
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Nanotechnology Pharmaceutical, Institute of Health Sciences, Federal University of Pará, Rua Augusto Corrêa 01, Belém 66075-110, PA, Brazil
| |
Collapse
|