1
|
Flowers M, Paulsen A, Kaiser CRW, Tuma AB, Lim HH, Ogle BM, Wang C. Alginate Hydrogel Beads with a Leakproof Gold Shell for Ultrasound-Triggered Release. Pharmaceutics 2025; 17:133. [PMID: 39861779 PMCID: PMC11768098 DOI: 10.3390/pharmaceutics17010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. Methods: The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs). The coated bead is subject to electroless plating, forming a gold shell. Ultrasound is applied to the gold-plated ALG beads and the release of fluorescein with or without ultrasound stimulation is quantified. Results: Polyethylenimine (PEI), not poly-L-lysine (PLL), is able to facilitate Pt NP adsorption. Gold shell thickness is proportional to the duration of electroless plating and can be controlled. Gold-plated ALG beads are impermeable to the fluorescein cargo and have nearly zero leakage. Exposure to focused ultrasound initiated the release of fluorescein with full release achieved after 72 h. Conclusions: The gold-plated ALG hydrogel is a new material platform that can retain highly water-soluble molecules with a sharp off/on release initiated by focused ultrasound.
Collapse
Affiliation(s)
- Marcus Flowers
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA; (M.F.); (A.P.); (C.R.W.K.); (H.H.L.); (B.M.O.)
| | - Alex Paulsen
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA; (M.F.); (A.P.); (C.R.W.K.); (H.H.L.); (B.M.O.)
| | - Claire R. W. Kaiser
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA; (M.F.); (A.P.); (C.R.W.K.); (H.H.L.); (B.M.O.)
| | - Adam B. Tuma
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware Street SE, Suite 8-240, Minneapolis, MN 55455, USA;
| | - Hubert H. Lim
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA; (M.F.); (A.P.); (C.R.W.K.); (H.H.L.); (B.M.O.)
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware Street SE, Suite 8-240, Minneapolis, MN 55455, USA;
- Institute for Translational Neuroscience, Medical School, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Brenda M. Ogle
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA; (M.F.); (A.P.); (C.R.W.K.); (H.H.L.); (B.M.O.)
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA; (M.F.); (A.P.); (C.R.W.K.); (H.H.L.); (B.M.O.)
| |
Collapse
|
2
|
Agrawal SS, Baliga V, Londhe VY. Liposomal Formulations: A Recent Update. Pharmaceutics 2024; 17:36. [PMID: 39861685 PMCID: PMC11769406 DOI: 10.3390/pharmaceutics17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 01/27/2025] Open
Abstract
Liposome-based drug delivery technologies have showed potential in enhancing medication safety and efficacy. Innovative drug loading and release mechanisms highlighted in this review of next-generation liposomal formulations. Due to poor drug release kinetics and loading capacity, conventional liposomes have limited clinical use. Scientists have developed new liposomal carrier medication release control and encapsulation methods to address these limits. Drug encapsulation can be optimized by creating lipid compositions that match a drug's charge and hydrophobicity. By selecting lipids and adding co-solvents or surfactants, scientists have increased drug loading in liposomal formulations while maintaining stability. Nanotechnology has also created multifunctional liposomes with triggered release and personalized drug delivery. Surface modification methods like PEGylation and ligand conjugation can direct liposomes to disease regions, improving therapeutic efficacy and reducing off-target effects. In addition to drug loading, researchers have focused on spatiotemporal modulation of liposomal carrier medication release. Stimuli-responsive liposomes release drugs in response to bodily signals. Liposomes can be pH- or temperature-sensitive. To improve therapeutic efficacy and reduce systemic toxicity, researchers added stimuli-responsive components to liposomal membranes to precisely control drug release kinetics. Advanced drug delivery technologies like magnetic targeting and ultrasound. Pro Drug, RNA Liposomes approach may improve liposomal medication administration. Magnetic targeting helps liposomes aggregate at illness sites and improves drug delivery, whereas ultrasound-mediated drug release facilitates on-demand release of encapsulated medicines. This review also covers recent preclinical and clinical research showing the therapeutic promise of next-generation liposomal formulations for cancer, infectious diseases, neurological disorders and inflammatory disorders. The transfer of these innovative liposomal formulations from lab to clinical practice involves key difficulties such scalability, manufacturing difficulty, and regulatory limits.
Collapse
Affiliation(s)
- Surendra S. Agrawal
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi (M), Wardha 442001, Maharashtra, India;
| | - Vrinda Baliga
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Vaishali Y. Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| |
Collapse
|
3
|
Munekane M, Ozaki M, Mitani Y, Sakaida N, Sano K, Yamasaki T, Mukai T, Mishiro K, Fuchigami T, Ogawa K. Development of Radiolabeled Probes with Improved Imaging Contrast by Releasing Urinary Excretable Radiolabeled Compounds from Thermosensitive Liposomes in the Blood. Mol Pharm 2024; 21:5728-5735. [PMID: 39445871 DOI: 10.1021/acs.molpharmaceut.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In this study, thermosensitive liposomes (TSLs) encapsulating urinary excretable radiolabeled compounds were developed. We considered that the release of the radiolabeled compounds from the TSLs in the blood by heating the blood in peripheral tissues can achieve rapid clearance of radioactivity, resulting in improved imaging contrast. To demonstrate the hypothesis, classical TSLs mainly composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine with a phase transition temperature of 41 °C were used. The optimal composition of TSLs was determined by an in vitro release test using [111In]In-diethylenetriaminepentaacetic acid (DTPA)-encapsulated liposomes, which showed that the cholesterol content drastically changed the release characteristics of classical TSLs. In the biodistribution experiments, [111In]In-DTPA was significantly released from the TSLs in the blood when the tails of mice were heated at 43 °C. The tumor-to-blood ratio of the heated group was three times higher than that of the nonheated group, and accumulation in normal tissues of the heated group was lower than that of the nonheated group. These results demonstrate the usefulness of the method using TSLs to encapsulate urinary excretable radiolabeled compounds for improving imaging contrast.
Collapse
Affiliation(s)
- Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Miki Ozaki
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuri Mitani
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Natsuki Sakaida
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Kohei Sano
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Takahiro Mukai
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
4
|
Singh A, Reynolds JNJ. Therapeutic ultrasound: an innovative approach for targeting neurological disorders affecting the basal ganglia. Front Neuroanat 2024; 18:1469250. [PMID: 39417047 PMCID: PMC11480080 DOI: 10.3389/fnana.2024.1469250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
The basal ganglia are involved in motor control and action selection, and their impairment manifests in movement disorders such as Parkinson's disease (PD) and dystonia, among others. The complex neuronal circuitry of the basal ganglia is located deep inside the brain and presents significant treatment challenges. Conventional treatment strategies, such as invasive surgeries and medications, may have limited effectiveness and may result in considerable side effects. Non-invasive ultrasound (US) treatment approaches are becoming increasingly recognized for their therapeutic potential for reversibly permeabilizing the blood-brain barrier (BBB), targeting therapeutic delivery deep into the brain, and neuromodulation. Studies conducted on animals and early clinical trials using ultrasound as a therapeutic modality have demonstrated promising outcomes for controlling symptom severity while preserving neural tissue. These results could improve the quality of life for patients living with basal ganglia impairments. This review article explores the therapeutic frontiers of ultrasound technology, describing the brain mechanisms that are triggered and engaged by ultrasound. We demonstrate that this cutting-edge method could transform the way neurological disorders associated with the basal ganglia are managed, opening the door to less invasive and more effective treatments.
Collapse
Affiliation(s)
| | - John N. J. Reynolds
- Translational Brain Plasticity Laboratory, Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research Center, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Vulasala SS, Sutphin P, Shyn P, Kalva S. Intraoperative Imaging Techniques in Oncology. Clin Oncol (R Coll Radiol) 2024; 36:e255-e268. [PMID: 38242817 DOI: 10.1016/j.clon.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Imaging-based procedures have become well integrated into the diagnosis and management of oncological patients and play a significant role in reducing morbidity and mortality rates. Here we describe the established and upcoming surgical oncological imaging techniques and their impact on cancer management.
Collapse
Affiliation(s)
- S S Vulasala
- Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida, USA.
| | - P Sutphin
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - P Shyn
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - S Kalva
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Alrbyawi H. Stimuli-Responsive Liposomes of 5-Fluorouracil: Progressive Steps for Safe and Effective Treatment of Colorectal Cancer. Pharmaceutics 2024; 16:966. [PMID: 39065663 PMCID: PMC11280302 DOI: 10.3390/pharmaceutics16070966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
5-Fluorouracil (5-FU) has become one of the most widely employed antimetabolite chemotherapeutic agents in recent decades to treat various types of cancer. It is considered the standard first-line treatment for patients with metastatic colorectal cancer. Unfortunately, traditional chemotherapy with 5-FU presents many limitations, such as a short half-life, a low bioavailability, and a high cytotoxicity, affecting both tumor tissue and healthy tissue. In order to overcome the drawbacks of 5-FU and enhance its therapeutic effectiveness against colorectal cancer, many studies have focused on designing new delivery systems to successfully deliver 5-FU to tumor sites. Liposomes have gained attention as a well-accepted nanocarrier for several chemotherapeutic agents. These amphipathic spherical vesicles consist of one or more phospholipid bilayers, showing promise for the drug delivery of both hydrophobic and hydrophilic components in addition to distinctive properties, such as biodegradability, biocompatibility, a low toxicity, and non-immunogenicity. Recent progress in liposomes has mainly focused on chemical and structural modifications to specifically target and activate therapeutic actions against cancer within the proximity of tumors. This review provides a comprehensive overview of both internal-stimuli-responsive liposomes, such as those activated by enzymes or pH, and external-stimuli-responsive liposomes, such as those activated by the application of a magnetic field, light, or temperature variations, for the site-specific delivery of 5-FU in colorectal cancer therapy, along with the future perspectives of these smart-delivery liposomes in colorectal cancer. In addition, this review critically highlights recent innovations in the literature on various types of stimuli-responsive liposomal formulations designed to be applied either exogenously or endogenously and that have great potential in delivering 5-FU to colorectal cancer sites.
Collapse
Affiliation(s)
- Hamad Alrbyawi
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
| |
Collapse
|
7
|
Kim S, Lee JY, Park EJ, Ahn YD, Cheon Y, Sim W, Lee HJ. Tumor suppression effect of ultrasound-sensitive nanoparticles with focused ultrasound in a pancreas cancer xenograft model. Eur Radiol Exp 2024; 8:39. [PMID: 38503996 PMCID: PMC10951153 DOI: 10.1186/s41747-024-00436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/15/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND We investigated the tumor suppression effect of an ultrasound-sensitive doxorubicin-loaded liposome-based nanoparticle, IMP301, to enhance the synergistic effect with focused ultrasound (FUS) in an animal model of pancreatic cancer. METHODS Thirty nude mice with xenografts of PANC-1 human pancreatic cancer cells were randomly and prospectively allocated to 6 different groups (5 per group) each for Study-1 (dose-response test) and Study-2 (synergistic effect test). Study-1 consisted of control, gemcitabine, Doxil with FUS, and three different doses of IMP301 (2, 4, 6 mg/kg) with FUS groups. Study-2 consisted of control, FUS only, gemcitabine, Doxil with FUS, and IMP301 (4 mg/kg) with or without FUS groups. Differences in tumor volume and growth rate were evaluated by one-way ANOVA and Student-Newman-Keuls test. RESULTS In Study-1, 4 mg/kg or greater IMP301 with FUS groups showed lower tumor growth rates of 14 ± 4 mm3/day (mean ± standard deviation) or less, compared to the control, gemcitabine, and Doxil with FUS groups with rates exceeding 28 ± 5 (p < 0.050). The addition of FUS in Study-2 decreased the tumor growth rate in the IMP301-treated groups from 36 ± 17 to 9 ± 6, which was lower than the control, FUS only, gemcitabine, and Doxil with FUS groups (p < 0.050). CONCLUSIONS IMP301 combined with FUS exhibited higher tumor growth suppression compared to the use of a conventional drug alone or the combination with FUS. The present study showed the potential of IMP301 to enhance the synergistic effect with FUS for the treatment of pancreatic cancer. RELEVANCE STATEMENT This article aims to evaluate the synergistic effect of FUS and ultrasound-responsive liposomal drug in tumor growth suppression by using xenograft mouse model of pancreatic ductal adenocarcinoma. FUS-induced ultrasound-sensitive drug release may be a potential noninvasive repeatable treatment option for patients with locally advanced or unresectable pancreatic cancer. KEY POINTS • Modification of conventional drugs combined with FUS would maximize tumor suppression. • IMP301 with FUS had higher tumor suppression effect compared to conventional chemotherapy. • This image-guided drug delivery would enhance therapeutic effects of systemic chemotherapy.
Collapse
Affiliation(s)
- Soojin Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae Young Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea, 03080.
| | - Eun-Joo Park
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun Deok Ahn
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yuri Cheon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Wonchul Sim
- IMGT Company, Ltd, Seongnam, Republic of Korea
| | - Hak Jong Lee
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea, 03080
- IMGT Company, Ltd, Seongnam, Republic of Korea
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Lim SH, Yee GT, Khang D. Nanoparticle-Based Combinational Strategies for Overcoming the Blood-Brain Barrier and Blood-Tumor Barrier. Int J Nanomedicine 2024; 19:2529-2552. [PMID: 38505170 PMCID: PMC10949308 DOI: 10.2147/ijn.s450853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
The blood-brain barrier (BBB) and blood-tumor barrier (BTB) pose substantial challenges to efficacious drug delivery for glioblastoma multiforme (GBM), a primary brain tumor with poor prognosis. Nanoparticle-based combinational strategies have emerged as promising modalities to overcome these barriers and enhance drug penetration into the brain parenchyma. This review discusses various nanoparticle-based combinatorial approaches that combine nanoparticles with cell-based drug delivery, viral drug delivery, focused ultrasound, magnetic field, and intranasal drug delivery to enhance drug permeability across the BBB and BTB. Cell-based drug delivery involves using engineered cells as carriers for nanoparticles, taking advantage of their intrinsic migratory and homing capabilities to facilitate the transport of therapeutic payloads across BBB and BTB. Viral drug delivery uses engineered viral vectors to deliver therapeutic genes or payloads to specific cells within the GBM microenvironment. Focused ultrasound, coupled with microbubbles or nanoparticles, can temporarily disrupt the BBB to increase drug permeability. Magnetic field-guided drug delivery exploits magnetic nanoparticles to facilitate targeted drug delivery under an external magnetic field. Intranasal drug delivery offers a minimally invasive avenue to bypass the BBB and deliver therapeutic agents directly to the brain via olfactory and trigeminal pathways. By combining these strategies, synergistic effects can enhance drug delivery efficiency, improve therapeutic efficacy, and reduce off-target effects. Future research should focus on optimizing nanoparticle design, exploring new combination strategies, and advancing preclinical and clinical investigations to promote the translation of nanoparticle-based combination therapies for GBM.
Collapse
Affiliation(s)
- Su Hyun Lim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Gi Taek Yee
- Department of Neurosurgery, Gil Medical Center, Gachon University, School of Medicine, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, School of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
9
|
Park JR, Kim G, Won J, Kim CW, Park D. Evaluation of Doxorubicin-loaded Echogenic Macroemulsion for Targeted Drug Delivery. Curr Drug Deliv 2024; 21:785-793. [PMID: 37016528 DOI: 10.2174/1567201820666230403111118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND The latest technology trend in targeted drug delivery highlights stimuliresponsive particles that can release an anticancer drug in a solid tumor by responding to external stimuli. OBJECTIVE This study aims to design, fabricate, and evaluate an ultrasound-responsive drug delivery vehicle for an ultrasound-mediated drug delivery system. METHODS The drug-containing echogenic macroemulsion (eME) was fabricated by an emulsification method using the three phases (aqueous lipid solution as a shell, doxorubicin (DOX) contained oil, and perfluorohexane (PFH) as an ultrasound-responsive agent). The morphological structure of eMEs was investigated using fluorescence microscopy, and the size distribution was analyzed by using DLS. The echogenicity of eME was measured using a contrast-enhanced ultrasound device. The cytotoxicity was evaluated using a breast cancer cell (MDA-MB-231) via an in vitro cell experiment. RESULTS The obtained eME showed an ideal morphological structure that contained both DOX and PFH in a single particle and indicated a suitable size for enhancing ultrasound response and avoiding complications in the blood vessel. The echogenicity of eME was demonstrated via an in vitro experiment, with results showcasing the potential for targeted drug delivery. Compared to free DOX, enhanced cytotoxicity and improved drug delivery efficiency in a cancer cell were proven by using DOX-loaded eMEs and ultrasound. CONCLUSION This study established a platform technology to fabricate the ultrasound-responsive vehicle. The designed drug-loaded eME could be a promising platform with ultrasound technology for targeted drug delivery.
Collapse
Affiliation(s)
- Jong-Ryul Park
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Gayoung Kim
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Jongho Won
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Chul-Woo Kim
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Donghee Park
- BioInfra Life Science Inc., 524, Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| |
Collapse
|
10
|
Awad NS, Paul V, AlSawaftah NM, Husseini GA. Effect of phospholipid head group on ultrasound-triggered drug release and cellular uptake of immunoliposomes. Sci Rep 2023; 13:16644. [PMID: 37789072 PMCID: PMC10547810 DOI: 10.1038/s41598-023-43813-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
Liposomes are the most successful nanoparticles used to date to load and deliver chemotherapeutic agents to cancer cells. They are nano-sized vesicles made up of phospholipids, and targeting moieties can be added to their surfaces for the active targeting of specific tumors. Furthermore, Ultrasound can be used to trigger the release of the loaded drugs by disturbing their phospholipid bilayer structure. In this study, we have prepared pegylated liposomes using four types of phospholipids with similar saturated hydrocarbon tails including a phospholipid with no head group attached to the phosphate head (DPPA) and three other phospholipids with different head groups attached to their phosphate heads (DPPC, DPPE and DPPG). The prepared liposomes were conjugated to the monoclonal antibody trastuzumab (TRA) to target the human epidermal growth factor receptor 2 (HER2) overexpressed on HER2-positive cancer cells (HER2+). We have compared the response of the different formulations of liposomes when triggered with low-frequency ultrasound (LFUS) and their cellular uptake by the cancer cells. The results showed that the different formulations had similar size, polydispersity, and stability. TRA-conjugated DPPC liposomes showed the highest sensitivity to LFUS. On the other hand, incubating the cancer cells with TRA-conjugated DPPA liposomes triggered with LFUS showed the highest uptake of the loaded calcein by the HER2+ cells.
Collapse
Affiliation(s)
- Nahid S Awad
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Vinod Paul
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, United Arab Emirates
- Materials Science and Engineering Program, American University of Sharjah, Sharjah, United Arab Emirates
| | - Nour M AlSawaftah
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, United Arab Emirates
- Materials Science and Engineering Program, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ghaleb A Husseini
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, United Arab Emirates.
- Materials Science and Engineering Program, American University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
11
|
Park JH, Lee BC, Seo YC, Kim JH, Kim DJ, Lee HJ, Moon H, Lee S. Drug delivery by sonosensitive liposome and microbubble with acoustic-lens attached ultrasound: an in vivo feasibility study in a murine melanoma model. Sci Rep 2023; 13:15798. [PMID: 37737248 PMCID: PMC10517155 DOI: 10.1038/s41598-023-42786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Conventional chemotherapy methods have adverse off-target effects and low therapeutic efficiencies of drug release in target tumors. In this study, we proposed a combination therapy of doxorubicin (DOX)-loaded ultrasound (US)-sensitive liposomal nanocarriers (IMP301), microbubbles (MBs) under focused US exposure using convex acoustic lens-attached US (LENS) to tumor treatment. The therapeutic effects of each treatment in a murine melanoma model were evaluated using contrast-enhanced US (CEUS) and micro-computed tomography (micro-CT) imaging, bioluminescence and confocal microscopy imaging, and liquid chromatography-mass spectroscopy (LC/MS) analysis. Tumor-bearing mice were randomly assigned to one of the following groups: (1) G1: IMP301 only (n = 9); (2) G2: IMP301 + LENS (n = 9); (3) G3: IMP301 + MB + LENS (n = 9); (4) G4: DOXIL only (n = 9); and (5) G5: IMP301 without DOXIL group as a control group (n = 4). Ten days after tumor injection, tumor-bearing mice were treated according to each treatment strategy on 10th, 12th, and 14th days from the day of tumor injection. The CEUS images of the tumors in the murine melanoma model clearly showed increased echo signal intensity from MBs as resonant US scattering. The relative tumor volume of the G2 and G3 groups on the micro-CT imaging showed inhibited tumor growth than the reference baseline of the G5 group. DOX signals on bioluminescence and confocal microscopy imaging were mainly located at the tumor sites. LC/MS showed prominently higher intratumoral DOX concentration in the G3 group than in other treated groups. Therefore, this study effectively demonstrates the feasibility of the synergistic combination of IMP301, MBs, and LENS-application for tumor-targeted treatment. Thus, this study can enable efficient tumor-targeted treatment by combining therapy such as IMP301 + MBs + LENS-application.
Collapse
Affiliation(s)
- Jun Hong Park
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Byung Chul Lee
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Young Chan Seo
- Department of Medical Device Development, Seould National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Da Jung Kim
- Metabolomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Hak Jong Lee
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University Bundang Hospital, 82 Gumi-Ro 173, Bundang-Gu, Seongnam, 13620, Republic of Korea
- R&D Center, IMGT Co. Ltd., 172, Dolma-Ro, Bundang-Gu, Seongnam, 13605, Republic of Korea
| | - Hyungwon Moon
- R&D Center, IMGT Co. Ltd., 172, Dolma-Ro, Bundang-Gu, Seongnam, 13605, Republic of Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Innovative Medical Technology Research Institute, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
12
|
Zafar MN, Abuwatfa WH, Husseini GA. Acoustically-Activated Liposomal Nanocarriers to Mitigate the Side Effects of Conventional Chemotherapy with a Focus on Emulsion-Liposomes. Pharmaceutics 2023; 15:421. [PMID: 36839744 PMCID: PMC9963571 DOI: 10.3390/pharmaceutics15020421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
To improve currently available cancer treatments, nanomaterials are employed as smart drug delivery vehicles that can be engineered to locally target cancer cells and respond to stimuli. Nanocarriers can entrap chemotherapeutic drugs and deliver them to the diseased site, reducing the side effects associated with the systemic administration of conventional anticancer drugs. Upon accumulation in the tumor cells, the nanocarriers need to be potentiated to release their therapeutic cargo. Stimulation can be through endogenous or exogenous modalities, such as temperature, electromagnetic irradiation, ultrasound (US), pH, or enzymes. This review discusses the acoustic stimulation of different sonosensitive liposomal formulations. Emulsion liposomes, or eLiposomes, are liposomes encapsulating phase-changing nanoemulsion droplets, which promote acoustic droplet vaporization (ADV) upon sonication. This gives eLiposomes the advantage of delivering the encapsulated drug at low intensities and short exposure times relative to liposomes. Other formulations integrating microbubbles and nanobubbles are also discussed.
Collapse
Affiliation(s)
- Mah Noor Zafar
- Biomedical Engineering Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
13
|
Mueller EN, Alina TB, Curry SD, Ganguly S, Cha JN, Goodwin AP. Silica-coated gold nanorods with hydrophobic modification show both enhanced two-photon fluorescence and ultrasound drug release. J Mater Chem B 2022; 10:9789-9793. [PMID: 36420680 DOI: 10.1039/d2tb02197h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hydrophobically-modified silica-coated gold nanorods are presented here as multifunctional theranostic agents. A single modification both increases two-photon fluorescence and promotes cavitation-based acoustic signal for imaging. A two-fold greater release of small molecule drugs was observed under ultrasound-mediated conditions as compared to passive release without ultrasound.
Collapse
Affiliation(s)
- Evan N Mueller
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, USA.
| | - Talaial B Alina
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, USA.
| | - Shane D Curry
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, USA.
| | - Saheli Ganguly
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, USA.
| | - Jennifer N Cha
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, USA.
| | - Andrew P Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, USA.
| |
Collapse
|
14
|
Lee J, Um W, Moon H, Joo H, Song Y, Park M, Yoon B, Kim HR, Park JH. Evading Doxorubicin-Induced Systemic Immunosuppression Using Ultrasound-Responsive Liposomes Combined with Focused Ultrasound. Pharmaceutics 2022; 14:pharmaceutics14122603. [PMID: 36559097 PMCID: PMC9784431 DOI: 10.3390/pharmaceutics14122603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Doxorubicin (DOX) is a representative anticancer drug with a unique ability to induce immunogenic cell death of cancer cells. However, undesired toxicity on immune cells has remained a significant challenge, hindering the usage of DOX in cancer immunotherapy. Here, we report a combined therapy to avoid the off-target toxicity of DOX by adapting ultrasound-responsive liposomal doxorubicin and focused ultrasound exposure. Histological analysis demonstrated that the combined therapy induced less hemosiderosis of splenocytes and improved tumor infiltration of cytotoxic T lymphocytes. Additionally, in vivo therapeutic evaluation results indicate that the combined therapy achieved higher efficacy when combined with PD-1 immune-checkpoint blockade therapy by improving immunogenicity.
Collapse
Affiliation(s)
- Jeongjin Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Seoul 06351, Republic of Korea
| | - Wooram Um
- Department of Biotechnology, Pukyong National University, 45 Yongso-ro, Busan 48513, Republic of Korea
| | - Hyungwon Moon
- R&D Center, IMGT Co., Ltd., 172 Dolma-ro, Seongnam 13605, Republic of Korea
| | - Hyeyeon Joo
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Yeari Song
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Minsung Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Been Yoon
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Hyun-Ryoung Kim
- R&D Center, IMGT Co., Ltd., 172 Dolma-ro, Seongnam 13605, Republic of Korea
- Correspondence: (H.-R.K.); (J.H.P.)
| | - Jae Hyung Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Seoul 06351, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
- Correspondence: (H.-R.K.); (J.H.P.)
| |
Collapse
|
15
|
Moon H, Hwang K, Nam KM, Kim YS, Ko MJ, Kim HR, Lee HJ, Kim MJ, Kim TH, Kang KS, Kim NG, Choi SW, Kim CY. Enhanced delivery to brain using sonosensitive liposome and microbubble with focused ultrasound. BIOMATERIALS ADVANCES 2022; 141:213102. [PMID: 36103796 DOI: 10.1016/j.bioadv.2022.213102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Glioblastoma is considered one of the most aggressive and dangerous brain tumors. However, treatment of GBM has been still challenged due to blood-brain barrier (BBB). BBB prevents that the chemotherapeutic molecules are extravasated to brain. In this study, sonosensitive liposome encapsulating doxorubicin (DOX) was developed for enhancement of GBM penetration in combination with focused ultrasound (FUS) and microbubbles. Upon ultrasound (US) irradiation, microbubbles induce cavitation resulting in the tight junction of BBB endothelium to temporarily open. In addition, the composition of sonosensitive liposome was optimized by comparison of sonosensitivity and intracellular uptake to U87MG cells. The optimal sonosensitive liposome, IMP301-DC, resulted 123.9 ± 38.2 nm in size distribution and 98.2 % in loading efficiency. Related to sonosensitivity of IMP301-DC, US-triggered release ratio of doxorubicin was 69.2 ± 12.3 % at 92 W/cm2 of US intensity for 1 min. In the in vivo experiments, the accumulation of DiD fluorescence probe labeled IMP301-DC-shell in the brain through the BBB opening was increased more than two-fold compared to that of Doxil-shell, non-sonosensitive liposome. US exposure significantly increased GBM cytotoxicity of IMP301-DC. In conclusion, this study demonstrated that IMP301-DC could serve as an alternative solution to enhance the penetration to GBM treatment via BBB opening by non-invasive FUS combined with microbubbles.
Collapse
Affiliation(s)
- Hyungwon Moon
- R&D Center, IMGT Co., Ltd, Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| | - Kihwan Hwang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Kyung Mi Nam
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Yoon-Seok Kim
- R&D Center, IMGT Co., Ltd, Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| | - Min Jung Ko
- R&D Center, IMGT Co., Ltd, Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| | - Hyun Ryoung Kim
- R&D Center, IMGT Co., Ltd, Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| | - Hak Jong Lee
- R&D Center, IMGT Co., Ltd, Seongnam-si, Gyeonggi-do 13605, Republic of Korea; Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea; Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Institute of Bioengineering, BioMAX/N-Bio Institute of Seoul National University, Seoul 08826, Republic of Korea
| | - Mi Jeong Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.
| | - Tae Ho Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Gyo Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea; Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
16
|
Bahutair WN, Abuwatfa WH, Husseini GA. Ultrasound Triggering of Liposomal Nanodrugs for Cancer Therapy: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173051. [PMID: 36080088 PMCID: PMC9458162 DOI: 10.3390/nano12173051] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 05/11/2023]
Abstract
Efficient conventional chemotherapy is limited by its nonspecific nature, which causes severe systemic toxicity that can lead to patient discomfort and low therapeutic efficacy. The emergence of smart drug delivery systems (SDDSs) utilizing nanoparticles as drug nanocarriers has shown great potential in enhancing the targetability of anticancer agents and limiting their side effects. Liposomes are among the most investigated nanoplatforms due to their promising capabilities of encapsulating hydrophilic, lipophilic, and amphiphilic drugs, biocompatibility, physicochemical and biophysical properties. Liposomal nanodrug systems have demonstrated the ability to alter drugs' biodistribution by sufficiently delivering the entrapped chemotherapeutics at the targeted diseased sites, sparing normal cells from undesired cytotoxic effects. Combining liposomal treatments with ultrasound, as an external drug release triggering modality, has been proven effective in spatially and temporally controlling and stimulating drug release. Therefore, this paper reviews recent literature pertaining to the therapeutic synergy of triggering nanodrugs from liposomes using ultrasound. It also highlights the effects of multiple physical and chemical factors on liposomes' sonosensetivity, several ultrasound-induced drug release mechanisms, and the efficacy of ultrasound-responsive liposomal systems in cancer therapy. Overall, liposomal nanodrug systems triggered by ultrasound are promising cancer therapy platforms that can potentially alleviate the detriments of conventional cancer treatments.
Collapse
Affiliation(s)
- Wafa N. Bahutair
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Correspondence:
| |
Collapse
|
17
|
Lee H, Moon H, Kim HR. Effects of Lipid Shape and Interactions on the Conformation, Dynamics, and Curvature of Ultrasound-Responsive Liposomes. Pharmaceutics 2022; 14:1512. [PMID: 35890407 PMCID: PMC9320727 DOI: 10.3390/pharmaceutics14071512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
We perform coarse-grained molecular dynamics simulations of bilayers composed of various lipids and cholesterol at their different ratios. Simulations show that cholesterol-lipid interactions restrict the lateral dynamics of bilayers but also promote bilayer curvature, indicating that these opposite effects simultaneously occur and thus cannot significantly influence bilayer stability. In contrast, lyso-lipids effectively pack the vacancy in the bilayer composed of cone-shaped lipids and thus reduce bilayer dynamics and curvature, showing that bilayers are more significantly stabilized by lyso-lipids than by cholesterol, in agreement with experiments. In particular, the bilayer composed of cone-shaped lipids shows higher dynamics and curvature than does the bilayer composed of cylindrical-shaped lipids. To mimic ultrasound, a high external pressure was applied in the direction of bilayer normal, showing the formation of small pores that are surrounded by hydrophilic lipid headgroups, which can allow the release of drug molecules encapsulated into the liposome. These findings help to explain experimental observations regarding that liposomes are more significantly stabilized by lyso-lipids than by cholesterol, and that the liposome with cone-shaped lipids more effectively releases drug molecules upon applying ultrasound than does the liposome with cylindrical-shaped lipids.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si 16890, Korea
| | - Hyungwon Moon
- R&D Center, IMGT Co., Ltd., 172, Dolma-ro, Bundang-gu, Seongnam-si 13605, Korea;
| | - Hyun-Ryoung Kim
- R&D Center, IMGT Co., Ltd., 172, Dolma-ro, Bundang-gu, Seongnam-si 13605, Korea;
| |
Collapse
|