1
|
Sankar S, Kalidass B, Indrakumar J, Kodiveri Muthukaliannan G. NSAID-encapsulated nanoparticles as a targeted therapeutic platform for modulating chronic inflammation and inhibiting cancer progression: a review. Inflammopharmacology 2025:10.1007/s10787-025-01760-8. [PMID: 40285986 DOI: 10.1007/s10787-025-01760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Recent advancements in nanotechnology have significantly advanced nanocarrier-mediated drug delivery systems, promoting therapeutic outcomes in mitigating chronic inflammation and cancer. Nanomaterials offer significant advantages over traditional small-molecule drugs, including a high surface-area-to-volume ratio, tunable structural features, and extended bloodstream circulation time. Chronic inflammation is a well-established mechanism for malignant initiation, progression, and metastasis, promoting the potent strategy for cancer prevention and therapy. Numerous studies revealed that nonsteroidal anti-inflammatory drugs (NSAIDs) have the therapeutic ability to manage disease progression via amolerating angiogenesis and inducing apoptosis. However, prolonged intake of NSAIDs is often limited by adverse side-effects and systemic toxicities. The encapsulation of NSAIDs in a nanocarrier have materialized as a dynamic approach to mitigate the limitations by improving pharmacokinetics and pharmacodynamics, reducing off-target effects, and enhancing the drug stability. This review encompasses recent progress in the development of NSAID-based nanotherapeutics, focusing on pivotal mechanisms underlying nanoparticle-mediated drug delivery, such as improved tumor-specific targeting and strategies to overcome drug resistance. The ability of these nano-cargoes to accommodate anti-inflammatory strategies with advanced drug delivery platforms is critically evaluated. This review also highlights the transformative potential of NSAID-encapsulated nanoparticles as a multifaceted therapeutic venue for addressing chronic inflammation and mitigating cancer progression.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Bharathi Kalidass
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Janani Indrakumar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India.
| |
Collapse
|
2
|
de Oliveira KBS, Leite ML, Melo NTM, Lima LF, Barbosa TCQ, Carmo NL, Melo DAB, Paes HC, Franco OL. Antimicrobial Peptide Delivery Systems as Promising Tools Against Resistant Bacterial Infections. Antibiotics (Basel) 2024; 13:1042. [PMID: 39596736 PMCID: PMC11591436 DOI: 10.3390/antibiotics13111042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The extensive use of antibiotics during recent years has led to antimicrobial resistance development, a significant threat to global public health. It is estimated that around 1.27 million people died worldwide in 2019 due to infectious diseases caused by antibiotic-resistant microorganisms, according to the WHO. It is estimated that 700,000 people die each year worldwide, which is expected to rise to 10 million by 2050. Therefore, new and efficient antimicrobials against resistant pathogenic bacteria are urgently needed. Antimicrobial peptides (AMPs) present a broad spectrum of antibacterial effects and are considered potential tools for developing novel therapies to combat resistant infections. However, their clinical application is currently limited due to instability, low selectivity, toxicity, and limited bioavailability, resulting in a narrow therapeutic window. Here we describe an overview of the clinical application of AMPs against resistant bacterial infections through nanoformulation. It evaluates metal, polymeric, and lipid AMP delivery systems as promising for the treatment of resistant bacterial infections, offering a potential solution to the aforementioned limitations.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
| | - Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Campus Darcy Ribeiro, Bloco K, Universidade de Brasília, Federal District, Brasilia 70790-900, Brazil;
| | - Nadielle Tamires Moreira Melo
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Letícia Ferreira Lima
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Talita Cristina Queiroz Barbosa
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Nathalia Lira Carmo
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Douglas Afonso Bittencourt Melo
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
| | - Hugo Costa Paes
- Grupo de Engenharia de Biocatalisadores, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília, Federal District, Brasilia 70790-900, Brazil;
- Divisão de Clínica Médica, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília, Federal District, Brasilia 70910-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Federal District, Brasilia 71966-700, Brazil; (K.B.S.d.O.); (N.T.M.M.); (L.F.L.); (T.C.Q.B.); (N.L.C.); (D.A.B.M.)
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
- Pós-Graduação em Patologia Molecular, Campus Darcy Ribeiro, Universidade de Brasília, Brasilia 70790-900, Brazil
| |
Collapse
|
3
|
Inbaraj BS, Lai YW, Chen BH. A comparative study on inhibition of lung cancer cells by nanoemulsion, nanoliposome, nanogold and their folic acid conjugates prepared with collagen peptides from Taiwan tilapia skin. Int J Biol Macromol 2024; 261:129722. [PMID: 38280696 DOI: 10.1016/j.ijbiomac.2024.129722] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Valorization of fish processing waste to obtain value-added products such as collagen and bioactive peptides is a vital strategy to increase the economic value, reduce disposal problems, and prevent harmful impacts on both environment and health. This study aims to isolate two collagen peptides from Taiwan Tilapia skin and prepare 12 nanopeptides including nanoemulsion (NE), nanoliposome (NL), and nanogold (NG) without and with folic acid/chitosan (FA/CH) or FA ligand conjugation for comparison of their inhibition efficiency towards lung cancer cells A549 and normal lung cells MRC5. Acid-soluble collagen (yield, 21.58 %) was extracted using 0.5 M acetic acid and hydrolyzed to obtain two tilapia skin collagen peptides TSCP1 (482 Da) and TSCP2 (172 Da) respectively using 2.5 % and 12.5 % alcalase, with sample-to-water ratio at 1:30 (w/v), pH 8, temperature 50 °C, and hydrolysis time 6 h. Characterization of collagen peptides revealed the presence of type 1 collagen with a high amount of amino acids including glycine (32.6-33.1 %), alanine (13.6-14.0 %), proline (10.0-10.5 %), and hydroxyproline (7.3-7.6 %). TSCP1, TSCP2, and 12 nanopeptides showed a higher cytotoxicity towards A549 cells than MRC5 cells, with TSCP2 and its 6 nanopeptides exhibiting a lower IC50 compared to TSCP1 and its 6 nanopeptides. The mean particle size was 15.7, 33.6, and 16.0 nm respectively for TSCP2-NE, TSCP2-NL, and TSCP2-NG, but changed to 14.4, 36.3, and 17.9 nm following ligand conjugation with a shift in zeta potential from negative to positive for TSCP2-NE-FA/CH and TSCP2-NL-FA/CH. All nanopeptides were more effective than peptides in inhibiting the growth of A549 cells, with the lowest IC50 value being shown for TSCP2-NL-FA/CH (5.32 μg/mL), followed by TSCP2-NE-FA/CH (8.3 μg/mL), TSCP2-NE (22.4 μg/mL), TSCP2-NL (82.7 μg/mL), TSCP2-NG-FA (159.8 μg/mL), TSCP2-NG (234.0 μg/mL) and TSCP2 (359.7 μg/mL). Cell proportions of sub-G1, S, and G2/M phases increased dose-dependently, with a possible cell cycle arrest at G2/M phase. The proportion of necrotic cells was the highest for TSCP2, TSCP2-NE, TSCP2-NE-FA/CH, and TSCP2-NL, while that of late apoptotic cells dominated for TSCP2-NL-FA/CH, TSCP2-NG, and TSCP2-NG-FA. Similarly, TSCP2 and its 6 nanopeptides showed a dose-dependent rise in caspase-3, caspase-8, and caspase-9 activities for execution of apoptosis, with the ligand-conjugated nanopeptides being the most efficient, followed by nanopeptides and peptides. The outcome of this study demonstrated an effective strategy for valorization of Taiwan tilapia skin to obtain collagen peptides and their nanopeptides possessing anticancer activity and form a basis for in vivo study in the future.
Collapse
Affiliation(s)
| | - Yu-Wen Lai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; Department of Nutrition, China Medical University, Taichung 404328, Taiwan.
| |
Collapse
|
4
|
Rodrigues EG, Dobroff AS, Arruda DC, Tada DB, Paschoalin T, Polonelli L. A limitless Brazilian scientist: Professor Travassos and his contribution to cancer biology. Braz J Microbiol 2023; 54:2551-2560. [PMID: 37589929 PMCID: PMC10689629 DOI: 10.1007/s42770-023-01085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023] Open
Abstract
Luiz Rodolpho Travassos, a Brazilian scientist recognized in several areas of research, began his studies in the field of oncology in the late 1970s when he took a sabbatical at the Memorial Sloan Kettering Cancer Center, NY, USA. At that time, the discovery and characterization of human melanoma glycoprotein antigens yielded important publications. This experience allowed 16 years later, and Dr. Travassos founded UNONEX, significantly contributing with discoveries in the area of oncology and training of researchers. This review will address all the contributions of team of researchers who, together with Dr. Travassos, collaborated with investigations into molecules and processes that lead to the development of melanoma.
Collapse
Affiliation(s)
- Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Andrey S Dobroff
- University of New Mexico Comprehensive Cancer Center (UNMCCC), Albuquerque, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico (UNM) School of Medicine, Albuquerque, USA
| | - Denise C Arruda
- Integrated Group of Biotechnology, University of Mogi das Cruzes, UMC, Mogi das Cruzes, SP, Brazil
| | - Dayane B Tada
- Laboratory of Nanomaterials and Nanotoxicology, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Thaysa Paschoalin
- Department of Biophysics, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil.
| | - Luciano Polonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Tiwari H, Rai N, Singh S, Gupta P, Verma A, Singh AK, Kajal, Salvi P, Singh SK, Gautam V. Recent Advances in Nanomaterials-Based Targeted Drug Delivery for Preclinical Cancer Diagnosis and Therapeutics. Bioengineering (Basel) 2023; 10:760. [PMID: 37508788 PMCID: PMC10376516 DOI: 10.3390/bioengineering10070760] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Nano-oncology is a branch of biomedical research and engineering that focuses on using nanotechnology in cancer diagnosis and treatment. Nanomaterials are extensively employed in the field of oncology because of their minute size and ultra-specificity. A wide range of nanocarriers, such as dendrimers, micelles, PEGylated liposomes, and polymeric nanoparticles are used to facilitate the efficient transport of anti-cancer drugs at the target tumor site. Real-time labeling and monitoring of cancer cells using quantum dots is essential for determining the level of therapy needed for treatment. The drug is targeted to the tumor site either by passive or active means. Passive targeting makes use of the tumor microenvironment and enhanced permeability and retention effect, while active targeting involves the use of ligand-coated nanoparticles. Nanotechnology is being used to diagnose the early stage of cancer by detecting cancer-specific biomarkers using tumor imaging. The implication of nanotechnology in cancer therapy employs photoinduced nanosensitizers, reverse multidrug resistance, and enabling efficient delivery of CRISPR/Cas9 and RNA molecules for therapeutic applications. However, despite recent advancements in nano-oncology, there is a need to delve deeper into the domain of designing and applying nanoparticles for improved cancer diagnostics.
Collapse
Affiliation(s)
- Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh Kumar Singh
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Kajal
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Prafull Salvi
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
6
|
Li J, Wu T, Li S, Chen X, Deng Z, Huang Y. Nanoparticles for cancer therapy: a review of influencing factors and evaluation methods for biosafety. Clin Transl Oncol 2023:10.1007/s12094-023-03117-5. [PMID: 36807057 DOI: 10.1007/s12094-023-03117-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Nanoparticles are widely used in the biomedical field for diagnostic and therapeutic purposes due to their small size, high carrier capacity, and ease of modification, which enable selective targeting and as contrast agents. Over the past decades, more and more nanoparticles have received regulatory approval to enter the clinic, more nanoparticles have shown potential for clinical translation, and humans have increasing access to them. However, nanoparticles have a high potential to cause unpredictable adverse effects on human organs, tissues, and cells due to their unique physicochemical properties and interactions with DNA, lipids, cells, tissues, proteins, and biological fluids. Currently, issues, such as nanoparticle side effects and toxicity, remain controversial, and these pitfalls must be fully considered prior to their application to body systems. Therefore, it is particularly urgent and important to assess the safety of nanoparticles acting in living organisms. In this paper, we review the important factors influencing the biosafety of nanoparticles in terms of their properties, and introduce common methods to summarize the biosafety evaluation of nanoparticles through in vitro and in body systems.
Collapse
Affiliation(s)
- Jinghua Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China
| | - Tao Wu
- The First People's Hospital of Changde City, Changde, 415000, China
| | - Shiman Li
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xinyan Chen
- Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiming Deng
- The First People's Hospital of Changde City, Changde, 415000, China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, 530021, China. .,The First People's Hospital of Changde City, Changde, 415000, China.
| |
Collapse
|
7
|
Zeng L, Gowda BHJ, Ahmed MG, Abourehab MAS, Chen ZS, Zhang C, Li J, Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22:10. [PMID: 36635761 PMCID: PMC9835394 DOI: 10.1186/s12943-022-01708-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Skin cancer has emerged as the fifth most commonly reported cancer in the world, causing a burden on global health and the economy. The enormously rising environmental changes, industrialization, and genetic modification have further exacerbated skin cancer statistics. Current treatment modalities such as surgery, radiotherapy, conventional chemotherapy, targeted therapy, and immunotherapy are facing several issues related to cost, toxicity, and bioavailability thereby leading to declined anti-skin cancer therapeutic efficacy and poor patient compliance. In the context of overcoming this limitation, several nanotechnological advancements have been witnessed so far. Among various nanomaterials, nanoparticles have endowed exorbitant advantages by acting as both therapeutic agents and drug carriers for the remarkable treatment of skin cancer. The small size and large surface area to volume ratio of nanoparticles escalate the skin tumor uptake through their leaky vasculature resulting in enhanced therapeutic efficacy. In this context, the present review provides up to date information about different types and pathology of skin cancer, followed by their current treatment modalities and associated drawbacks. Furthermore, it meticulously discusses the role of numerous inorganic, polymer, and lipid-based nanoparticles in skin cancer therapy with subsequent descriptions of their patents and clinical trials.
Collapse
Affiliation(s)
- Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Jamaica, NY, 11439, USA
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Jia Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| |
Collapse
|
8
|
Taratula O, Taratula OR. Novel Nanoparticle-Based Treatment and Imaging Modalities. Pharmaceutics 2023; 15:244. [PMID: 36678873 PMCID: PMC9861272 DOI: 10.3390/pharmaceutics15010244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Over the last twenty years, nanomaterials have been widely used in cancer research [...].
Collapse
Affiliation(s)
- Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Olena R. Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| |
Collapse
|
9
|
Yang M, Liu S, Zhang C. Antimicrobial peptides with antiviral and anticancer properties and their modification and nanodelivery systems. CURRENT RESEARCH IN BIOTECHNOLOGY 2023; 5:100121. [DOI: 10.1016/j.crbiot.2023.100121] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|