1
|
Wendt S, Lin AJ, Ebert SN, Brennan DJ, Cai W, Bai Y, Kong DY, Sorrentino S, Groten CJ, Lee C, Frew J, Choi HB, Karamboulas K, Delhaye M, Mackenzie IR, Kaplan DR, Miller FD, MacVicar BA, Nygaard HB. A 3D human iPSC-derived multi-cell type neurosphere system to model cellular responses to chronic amyloidosis. J Neuroinflammation 2025; 22:119. [PMID: 40275379 DOI: 10.1186/s12974-025-03433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by progressive amyloid beta (Aβ) deposition in the brain, with eventual widespread neurodegeneration. While the cell-specific molecular signature of end-stage AD is reasonably well characterized through autopsy material, less is known about the molecular pathways in the human brain involved in the earliest exposure to Aβ. Human model systems that not only replicate the pathological features of AD but also the transcriptional landscape in neurons, astrocytes and microglia are crucial for understanding disease mechanisms and for identifying novel therapeutic targets. METHODS In this study, we used a human 3D iPSC-derived neurosphere model to explore how resident neurons, microglia and astrocytes and their interplay are modified by chronic amyloidosis induced over 3-5 weeks by supplementing media with synthetic Aβ1 - 42 oligomers. Neurospheres under chronic Aβ exposure were grown with or without microglia to investigate the functional roles of microglia. Neuronal activity and oxidative stress were monitored using genetically encoded indicators, including GCaMP6f and roGFP1, respectively. Single nuclei RNA sequencing (snRNA-seq) was performed to profile Aβ and microglia driven transcriptional changes in neurons and astrocytes, providing a comprehensive analysis of cellular responses. RESULTS Microglia efficiently phagocytosed Aβ inside neurospheres and significantly reduced neurotoxicity, mitigating amyloidosis-induced oxidative stress and neurodegeneration following different exposure times to Aβ. The neuroprotective effects conferred by the presence of microglia was associated with unique gene expression profiles in astrocytes and neurons, including several known AD-associated genes such as APOE. These findings reveal how microglia can directly alter the molecular landscape of AD. CONCLUSIONS Our human 3D neurosphere culture system with chronic Aβ exposure reveals how microglia may be essential for the cellular and transcriptional responses in AD pathogenesis. Microglia are not only neuroprotective in neurospheres but also act as key drivers of Aβ-dependent APOE expression suggesting critical roles for microglia in regulating APOE in the AD brain. This novel, well characterized, functional in vitro platform offers unique opportunities to study the roles and responses of microglia to Aβ modelling key aspects of human AD. This tool will help identify new therapeutic targets, accelerating the transition from discovery to clinical applications.
Collapse
Affiliation(s)
- Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada.
| | - Ada J Lin
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Sarah N Ebert
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6 T 1Z4, Canada
| | - Declan J Brennan
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Wenji Cai
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Yanyang Bai
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Da Young Kong
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Stefano Sorrentino
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Christopher J Groten
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Christopher Lee
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Jonathan Frew
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Opalia Co, Montreal, QC, H2X 3Y7, Canada
| | - Hyun B Choi
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Konstantina Karamboulas
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, M5G 0 A4, Canada
| | - Mathias Delhaye
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Ian R Mackenzie
- Department of Pathology, Vancouver General Hospital, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - David R Kaplan
- Department of Medical Genetics, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, M5G 0 A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1 A8, Canada
| | - Freda D Miller
- Department of Medical Genetics, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6 T 1Z4, Canada
| | - Brian A MacVicar
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Haakon B Nygaard
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada.
| |
Collapse
|
2
|
Lisi I, Moro F, Mazzone E, Marklund N, Pischiutta F, Kobeissy F, Mao X, Corrigan F, Helmy A, Nasrallah F, Pietro VD, Ngwenya LB, Portela LV, Semple BD, Schneider ALC, Arrastia RD, Menon DK, Smith DH, Wellington C, Loane DJ, Wang KKW, Zanier ER. Exploiting blood-based biomarkers to align preclinical models with human traumatic brain injury. Brain 2025; 148:1062-1080. [PMID: 39514789 PMCID: PMC11967814 DOI: 10.1093/brain/awae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/17/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Rodent models are important research tools for studying the pathophysiology of traumatic brain injury (TBI) and developing new therapeutic interventions for this devastating neurological disorder. However, the failure rate for the translation of drugs from animal testing to human treatments for TBI is 100%. While there are several potential explanations for this, previous clinical trials have relied on extrapolation from preclinical studies for critical design considerations, including drug dose optimization, post-injury drug treatment initiation and duration. Incorporating clinically relevant biomarkers in preclinical studies may provide an opportunity to calibrate preclinical models to identical (or similar) measurements in humans, link to human TBI biomechanics and pathophysiology, and guide therapeutic decisions. To support this translational goal, we conducted a systematic literature review of preclinical TBI studies in rodents measuring blood levels of clinically used GFAP, UCH-L1, NfL, total-Tau (t-Tau) or phosphorylated-Tau (p-Tau) published in PubMed/EMBASE up to 10 April 2024. Although many factors influence clinical TBI outcomes, many of those cannot routinely be assessed in rodent studies (e.g. intracranial pressure monitoring). Thus we focused on blood biomarkers' temporal trajectories and discuss our findings in the context of the latest clinical TBI biomarker data. Of 805 original preclinical studies, 74 met the inclusion criteria, with a median quality score of 5 (25th-75th percentiles: 4-7) on the CAMARADES checklist. GFAP was measured in 43 studies, UCH-L1 in 21, NfL in 20, t-Tau in 19 and p-Tau in seven. Data from rodent models indicate that all biomarkers exhibited injury severity-dependent elevations with distinct temporal profiles. GFAP and UCH-L1 peaked within the first day after TBI (30- and 4-fold increases, respectively, in moderate-to-severe TBI versus sham), with the highest levels observed in the contusion TBI model. NfL peaked within days (18-fold increase) and remained elevated up to 6 months post-injury. GFAP and NfL show a pharmacodynamic response in 64.7% and 60%, respectively, of studies evaluating neuroprotective therapies in preclinical models. However, GFAP's rapid decline post-injury may limit its utility for understanding the response to new therapeutics beyond the hyperacute phase after experimental TBI. Furthermore, as in humans, subacute NfL levels inform on chronic white matter loss after TBI. t-Tau and p-Tau levels increased over weeks after TBI (up to 6- and 16-fold, respectively); however, their relationship with underlying neurodegeneration has yet to be addressed. Further investigation into biomarker levels in the subacute and chronic phases after TBI will be needed to fully understand the pathomechanisms underpinning blood biomarkers' trajectories and select the most suitable experimental model to optimally relate preclinical mechanistic studies to clinical observations in humans. This new approach could accelerate the translation of neuroprotective treatments from laboratory experiments to real-world clinical practices.
Collapse
Affiliation(s)
- Ilaria Lisi
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Federico Moro
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Edoardo Mazzone
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Neurosurgery, Lund University and Skåne University Hospital, Lund 222 42, Sweden
| | - Francesca Pischiutta
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xiang Mao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Frances Corrigan
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Fatima Nasrallah
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Valentina Di Pietro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Laura B Ngwenya
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 670715, USA
| | - Luis V Portela
- Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul—UFRGS, Porto Alegre, RS 90040-060, Brasil
| | - Bridgette D Semple
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3800, Australia
| | - Andrea L C Schneider
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6021, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramon Diaz Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Douglas H Smith
- Center for Brain Injury and Repair and the Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl Wellington
- Department of Pathology, Djavad Mowafaghain Centre for Brain Health, International Collaboration on Repair Discoveries, School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - David J Loane
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 152-160, Ireland
| | - Kevin K W Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Elisa R Zanier
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| |
Collapse
|
3
|
Liu D, Chen G, Hu C, Li H. Promising odor-based therapeutics targeting ectopic olfactory receptor proteins in cancer: A review. Int J Biol Macromol 2025; 308:142342. [PMID: 40139602 DOI: 10.1016/j.ijbiomac.2025.142342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Cancer remains a formidable adversary in global health, necessitating the development of innovative strategies to curb the proliferation, invasion, and metastasis of cancer cells for effective treatment outcomes. Traditional cancer therapies often fall short in addressing the diverse therapeutic requirements of patients. Consequently, the exploration of novel therapeutic targets has become increasingly vital. Olfactory receptors (ORs) belonging to the G protein-coupled receptor (GPCR) subfamily, are present in non-nasal tissues and contribute to a wide range of physiological functions. ORs are specifically expressed in malignant tumors and have emerged as potential biomarkers for cancer detection. They can regulate diverse tumor biological behaviors and are involved in the development of malignant tumors, indicating that they might serve as potential targets for cancer treatment. This paper provides a comprehensive review of the ectopic expression of ORs, their functions in malignancies and odor-based therapeutics targeting ectopic olfactory receptors (EORs) in cancer, and aims to clarify their connection with cancer, providing new clues for probing the tumor biology and developing therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Dongsheng Liu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Gaojun Chen
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Changyi Hu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
4
|
Guo H, Yang R, Cheng W, Li Q, Du M. An Update of Salivary Biomarkers for the Diagnosis of Alzheimer's Disease. Int J Mol Sci 2025; 26:2059. [PMID: 40076682 PMCID: PMC11900270 DOI: 10.3390/ijms26052059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive cognition and behavior impairments. Diagnosing AD early is important for clinicians to slow down AD progression and preserve brain function. Biomarkers such as tau protein and amyloid-β peptide (Aβ) are used to aid diagnosis as clinical diagnosis often lags. Additionally, biomarkers can be used to monitor AD status and evaluate AD treatment. Clinicians detect these AD biomarkers in the brain using positron emission tomography/computed tomography or in the cerebrospinal fluid using a lumbar puncture. However, these methods are expensive and invasive. In contrast, saliva collection is simple, inexpensive, non-invasive, stress-free, and repeatable. Moreover, damage to the brain parenchyma can impact the oral cavity and some pathogenic molecules could travel back and forth from the brain to the mouth. This has prompted researchers to explore biomarkers in the saliva. Therefore, this study provides an overview of the main finding of salivary biomarkers for AD diagnosis. Based on these available studies, Aβ, tau, cholinesterase enzyme activity, lactoferrin, melatonin, cortisol, proteomics, metabolomics, exosomes, and the microbiome were changed in AD patients' saliva when compared to controls. However, well-designed studies are essential to confirm the reliability and validity of these biomarkers in diagnosing and monitoring AD.
Collapse
Affiliation(s)
| | | | | | | | - Minquan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (H.G.); (R.Y.); (W.C.); (Q.L.)
| |
Collapse
|
5
|
Zúñiga CH, Acosta BI, Menchaca R, Amescua CA, Hong S, Hui L, Gil M, Rhee YH, Yoon S, Kim M, Chang PY, Kim YM, Song PY, Betito K. Treatment of Alzheimer's Disease subjects with expanded non-genetically modified autologous natural killer cells (SNK01): a phase I study. Alzheimers Res Ther 2025; 17:40. [PMID: 39939891 DOI: 10.1186/s13195-025-01681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND The importance of natural killer (NK) cells of the innate immune system in neurodegenerative disease has largely been overlooked despite studies demonstrating their ability to reduce neuroinflammation (thought to be mediated by the elimination of activated T cells, degradation of protein aggregates and secretion of anti-inflammatory cytokines). SNK01 is an autologous non-genetically modified NK cell product showing increased activity in vitro. We hypothesized that SNK01 can be safely infused to reduce neuroinflammation in Alzheimer's Disease (AD) patients. METHODS SNK01 was produced and characterized for its ability to eliminate activated T cells, degrade protein aggregates and secrete anti-inflammatory cytokines. In this phase 1 study, SNK01 was administered intravenously every three weeks for a total of 4 treatments using a 3 + 3 dose escalation design (1, 2 and 4 × 109 cells) in subjects with either mild, moderate, or severe AD (median CDR-SB 10.0). Cognitive assessments and cerebrospinal fluid biomarkers associated with protein aggregation, neurodegeneration and neuroinflammation including amyloid-β42 and 42/40, α-synuclein, total Tau, pTau217 and pTau181, neurofilament light, GFAP and YKL-40 analyses were performed at baseline, at 1 and 12 weeks after the last dose. The primary endpoint was safety; secondary endpoints included changes in cognitive assessments and biomarker levels. RESULTS In preclinical in vitro studies, SNK01 were able to uptake and degrade the protein aggregates of amyloid-β and α-synuclein, produce anti-inflammatory cytokines and eliminate activated T cells. In the phase 1 clinical study, eleven subjects were enrolled (10 evaluable). No drug-related adverse events were observed. Despite 70% of subjects being treated at relatively low doses of SNK01 (1 and 2 × 109 cells), 50-70% of all enrolled subjects had stable/improved CDR-SB, ADAS-Cog and/or MMSE scores and 90% had stable/improved ADCOMS at one-week after the last dose. SNK01 also appeared to have beneficial effects on protein aggregate levels and neuroinflammatory biomarkers in the cerebrospinal fluid, with decreases in pTau181 and GFAP appearing to be dose-dependent. CONCLUSIONS SNK01 was well tolerated and appeared to have clinical activity in AD while also having beneficial effects on cerebrospinal fluid protein and neuroinflammatory biomarker levels. A larger trial with a higher dosing/duration has been initiated in the USA in 2023. TRIAL REGISTRATION www. CLINICALTRIALS gov NCT04678453, date of registration: 2020-12-22.
Collapse
Affiliation(s)
| | - Blanca Isaura Acosta
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Rufino Menchaca
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Cesar A Amescua
- Hospital Angeles - Zona Río, Zona Urbana Río Tijuana, 22010, Tijuana, Baja California, México
| | - Sean Hong
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Lucia Hui
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Minchan Gil
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Yong-Hee Rhee
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Sangwook Yoon
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Minji Kim
- NKMAX Co., Ltd, 1F/6F, SNUH Healthcare Innovation Park, 172, Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Paul Y Chang
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Yong Man Kim
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Paul Y Song
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA
| | - Katia Betito
- NKGen Biotech, 3001 Daimler St, Santa Ana, CA, 92705, USA.
| |
Collapse
|
6
|
Xu YQ, Chen Y, Xing JX, Yao J. Relationship between enriched environment and neurodegeneration: a review from mechanism to therapy. Clin Epigenetics 2025; 17:13. [PMID: 39849536 PMCID: PMC11761206 DOI: 10.1186/s13148-025-01820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025] Open
Abstract
Enriched environment (EE), as a non-pharmacological intervention, has garnered considerable attention for its potential to ameliorate neurodegenerative diseases (NDs). This review delineated the impact of EE on the biological functions associated with NDs, emphasizing its role in enhancing neural plasticity, reducing inflammation, and bolstering cognitive performance. We discussed the molecular underpinnings of the effects of EE, including modulation of key signaling pathways such as extracellular regulated kinase 1/2 (ERK1/2), mitogen-activated protein kinases (MAPK), and AMPK/SIRT1, which were implicated in neuroprotection and synaptic plasticity. Additionally, we scrutinized the influence of EE on epigenetic modifications and autophagy, processes pivotal to ND pathogenesis. Animal models, encompassing both rodents and larger animals, offer insights into the disease-modifying effects of EE, underscoring its potential as a complementary approach to pharmacological interventions. In summary, EE emerges as a promising strategy to augment cognitive function and decelerate the progression of NDs.
Collapse
Affiliation(s)
- Yuan-Qiao Xu
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning Province, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenbei New District, No.77, Puhe Road, Shenyang, 110122, People's Republic of China
| | - Yanjiao Chen
- Shanxi Provincial People's Hospital, Taiyuan, People's Republic of China
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China.
- Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning Province, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenbei New District, No.77, Puhe Road, Shenyang, 110122, People's Republic of China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China.
- Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning Province, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenbei New District, No.77, Puhe Road, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
7
|
Pehlivan VF, Pehlivan B, Celik H, Duran E, Taskın A, Taskın S, Tatlı F. Investigation of the Acute Effects of Two Different Preoxygenation Methods on Neurodegenerative Biomarkers in Laparoscopic Cholecystectomy Surgery. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:167. [PMID: 40005285 PMCID: PMC11857148 DOI: 10.3390/medicina61020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: Oxygen is essential for all living organisms and plays a critical role in anesthesia and intensive care practices. However, the notion that unlimited oxygen therapy is harmless is a misconception. Our study investigates the acute effects of different preoxygenation methods on hemodynamic parameters and neurodegenerative biomarkers in patients undergoing laparoscopic cholecystectomy surgery. Materials and Methods: This prospective, randomized, controlled study included 52 patients undergoing elective laparoscopic cholecystectomy under general anesthesia. Patients were divided into two groups: Group I received standard preoxygenation (100% FiO2 for 3 min), while Group II underwent rapid preoxygenation (eight deep breaths over 30 s to 1 min). Hemodynamic parameters (SAP, DAP, MAP, and SpO2) and neurodegenerative biomarkers (pTau, S100B, NSE, NfL, GFAP) were measured after preoxygenation, after intubation, and at the end of surgery. Results: Group I exhibited a significant increase in levels of pTau, S100B, NSE, and GFAP, indicating higher neuronal and glial cell stress compared to Group II (p < 0.001). No significant increase in NfL levels was observed in either group. Hemodynamic parameters (HR, SAP, DAP, MAP) were significantly higher during and after preoxygenation in Group I, suggesting an increased stress response. Group II showed lower levels of acute neurotoxicity and oxidative stress. Conclusions: Our findings indicate that preoxygenation with 100% FiO2 induces stress in neuronal cells, axons, and glial cells, leading to an increase in neurodegenerative biomarkers. Optimizing preoxygenation strategies is crucial to reduce oxidative stress and improve neurological outcomes for surgical patients.
Collapse
Affiliation(s)
- Veli Fahri Pehlivan
- Department of Anesthesia and Reanimation, Faculty of Medicine, Harran University, Osmanbey Campus, PC 63300 Sanliurfa, Turkey; (B.P.); (E.D.)
| | - Basak Pehlivan
- Department of Anesthesia and Reanimation, Faculty of Medicine, Harran University, Osmanbey Campus, PC 63300 Sanliurfa, Turkey; (B.P.); (E.D.)
| | - Hakim Celik
- Department of Physiology, Faculty of Medicine, Harran University, Osmanbey Campus, PC 63300 Sanliurfa, Turkey; (H.C.); (S.T.)
| | - Erdogan Duran
- Department of Anesthesia and Reanimation, Faculty of Medicine, Harran University, Osmanbey Campus, PC 63300 Sanliurfa, Turkey; (B.P.); (E.D.)
| | - Abdullah Taskın
- Department of Nutrition and Dietetics, Health Science Faculty, Harran University, Osmanbey Campus, PC 63300 Sanliurfa, Turkey;
| | - Seyhan Taskın
- Department of Physiology, Faculty of Medicine, Harran University, Osmanbey Campus, PC 63300 Sanliurfa, Turkey; (H.C.); (S.T.)
| | - Faik Tatlı
- Department of General Surgery, Faculty of Medicine, Harran University, Osmanbey Campus, PC 63300 Sanliurfa, Turkey; faiktatli-@hotmail.com
| |
Collapse
|
8
|
Zou Y, Wang Y, Ma X, Mu D, Zhong J, Ma C, Mao C, Yu S, Gao J, Qiu L. CSF and blood glial fibrillary acidic protein for the diagnosis of Alzheimer's disease: A systematic review and meta-analysis. Ageing Res Rev 2024; 101:102485. [PMID: 39236854 DOI: 10.1016/j.arr.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Recently included in the 2024 new revised diagnostic criteria of Alzheimer's disease (AD), glial fibrillary acidic protein (GFAP) has garnered significant attention. A systematic review and meta-analysis were performed to comprehensively evaluate the diagnostic, differential diagnostic, and prospective diagnostic performance of GFAP in cerebrospinal fluid (CSF) and blood for AD continuum. A literature search using common electronic databases, important websites and historical search way was performed from inception to the beginning of March 2023. The inclusion criteria was studies evaluating the diagnostic accuracy of GFAP in CSF and/or blood for the AD continuum patients, utilizing PET scans, CSF biomarkers and/or clinical criteria. The systematic review and meta-analysis were conducted referring to the Cochrane Handbook. In total, 34 articles were eventually included in the meta-analysis, 29 of which were published within the past three years. Blood GFAP exhibited good diagnostic accuracy across various AD continuum patients, and the summary area under curve for distinguishing PET positive and negative individuals, CSF biomarkers defined positive and negative individuals, clinically diagnosed AD and cognitive unimpaired controls, AD and/or mild cognitive impairment and other neurological diseases, and prospective cases and controls was 0.85[0.81-0.88], 0.77[0.73-0.81], 0.92[0.90-0.94], 0.80[0.77-0.84], and 0.79[0.75-0.82], respectively. Only several studies were recognized to evaluate the diagnostic accuracy of CSF GFAP, which was not as good as that of blood GFAP (paired mixed data: AUC = 0.86 vs. AUC = 0.77), but its accuracy remarkably increased to AUC = 0.91 when combined with other factors like sex, age, and ApoE genotype. In summary, GFAP, particularly in blood, shown good diagnostic, differential diagnostic, and prospective diagnostic accuracy for AD continuum patients, with improved accuracy when used alongside other basic indexes.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Pathology and Lab Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117, Shandong, China
| | - Yifei Wang
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Danni Mu
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jian Zhong
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chaochao Ma
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chenhui Mao
- Department of Neurology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Jing Gao
- Department of Neurology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
9
|
Milos T, Vuic B, Balic N, Farkas V, Nedic Erjavec G, Svob Strac D, Nikolac Perkovic M, Pivac N. Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: an update of the literature. Expert Rev Neurother 2024; 24:1063-1079. [PMID: 39233323 DOI: 10.1080/14737175.2024.2400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The importance of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) diagnosis is rapidly increasing, and there is a growing interest in the use of CSF biomarkers in monitoring the response to therapy, especially in the light of newly available approaches to the therapy of neurodegenerative diseases. AREAS COVERED In this review we discuss the most relevant measures of neurodegeneration that are being used to distinguish patients with AD from healthy controls and individuals with mild cognitive impairment, in order to provide an overview of the latest information available in the scientific literature. We focus on markers related to amyloid processing, markers associated with neurofibrillary tangles, neuroinflammation, neuroaxonal injury and degeneration, synaptic loss and dysfunction, and markers of α-synuclein pathology. EXPERT OPINION In addition to neuropsychological evaluation, core CSF biomarkers (Aβ42, t-tau, and p-tau181) have been recommended for improvement of timely, accurate and differential diagnosis of AD, as well as to assess the risk and rate of disease progression. In addition to the core CSF biomarkers, various other markers related to synaptic dysfunction, neuroinflammation, and glial activation (neurogranin, SNAP-25, Nfl, YKL-40, TREM2) are now investigated and have yet to be validated for future potential clinical use in AD diagnosis.
Collapse
Affiliation(s)
- Tina Milos
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Nikola Balic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Vladimir Farkas
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | | | | | - Nela Pivac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia
| |
Collapse
|
10
|
Bailly C. Covalent binding of withanolides to cysteines of protein targets. Biochem Pharmacol 2024; 226:116405. [PMID: 38969301 DOI: 10.1016/j.bcp.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Withanolides represent an important category of natural products with a steroidal lactone core. Many of them contain an α,β-unsaturated carbonyl moiety with a high reactivity toward sulfhydryl groups, including protein cysteine thiols. Different withanolides endowed with marked antitumor and anti-inflammatory have been shown to form stable covalent complexes with exposed cysteines present in the active site of oncogenic kinases (BTK, IKKβ, Zap70), metabolism enzymes (Prdx-1/6, Pin1, PHGDH), transcription factors (Nrf2, NFκB, C/EBPβ) and other structural and signaling molecules (GFAP, β-tubulin, p97, Hsp90, vimentin, Mpro, IPO5, NEMO, …). The present review analyzed the covalent complexes formed through Michael addition alkylation reactions between six major withanolides (withaferin A, physalin A, withangulatin A, 4β-hydroxywithanolide E, withanone and tubocapsanolide A) and key cysteine residues of about 20 proteins and the resulting biological effects. The covalent conjugation of the α,β-unsaturated carbonyl system of withanolides with reactive protein thiols can occur with a large set of soluble and membrane proteins. It points to a general mechanism, well described with the leading natural product withaferin A, but likely valid for most withanolides harboring a reactive (electrophilic) enone moiety susceptible to react covalently with cysteinyl residues of proteins. The multiplicity of reactive proteins should be taken into account when studying the mechanism of action of new withanolides. Proteomic and network analyses shall be implemented to capture and compare the cysteine covalent-binding map for the major withanolides, so as to identify the protein targets at the origin of their activity and/or unwanted effects. Screening of the cysteinome will help understanding the mechanism of action and designing cysteine-reactive electrophilic drug candidates.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
11
|
Ganne A, Mainali N, Balasubramaniam M, Atluri R, Pahal S, Asante J, Nagel C, Vallurupalli S, Shmookler Reis RJ, Ayyadevara S. Ezetimibe Lowers Risk of Alzheimer's and Related Dementias over Sevenfold, Reducing Aggregation in Model Systems by Inhibiting 14-3-3G::Hexokinase Interaction. AGING BIOLOGY 2024; 2:20240028. [PMID: 39263528 PMCID: PMC11389752 DOI: 10.59368/agingbio.20240028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Numerous factors predispose to progression of cognitive impairment to Alzheimer's disease and related dementias (ADRD), most notably age, APOE(ε4) alleles, traumatic brain injury, heart disease, hypertension, obesity/diabetes, and Down's syndrome. Protein aggregation is diagnostic for neurodegenerative diseases, and may be causal through promotion of chronic neuroinflammation. We isolated aggregates from postmortem hippocampi of ADRD patients, heart-disease patients, and age-matched controls. Aggregates, characterized by high-resolution proteomics (with or without crosslinking), were significantly elevated in heart-disease and ADRD hippocampi. Hexokinase-1 (HK1) and 14-3-3G/γ proteins, previously implicated in neuronal signaling and neurodegeneration, are especially enriched in ADRD and heart-disease aggregates vs. controls (each P<0.008), and their interaction was implied by extensive crosslinking in both disease groups. Screening the hexokinase-1::14-3-3G interface with FDA-approved drug structures predicted strong affinity for ezetimibe, a benign cholesterol-lowering medication. Diverse cultured human-cell and whole-nematode models of ADRD aggregation showed that this drug potently disrupts HK1::14-3-3G adhesion, reduces disease-associated aggregation, and activates autophagy. Mining clinical databases supports drug reduction of ADRD risk, decreasing it to 0.14 overall (P<0.0001; 95% C.I. 0.06-0.34), and <0.12 in high-risk heart-disease subjects (P<0.006). These results suggest that drug disruption of the 14-3-3G::HK1 interface blocks an early "lynchpin" adhesion, prospectively reducing aggregate accrual and progression of ADRD.
Collapse
Affiliation(s)
- Akshatha Ganne
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | | | - Ramani Atluri
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Sonu Pahal
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Joseph Asante
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Corey Nagel
- College of Nursing, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Srikanth Vallurupalli
- Central Arkansas Veterans Healthcare System, Little Rock AR 72205
- Department of Internal Medicine, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
- Central Arkansas Veterans Healthcare System, Little Rock AR 72205
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
- Central Arkansas Veterans Healthcare System, Little Rock AR 72205
| |
Collapse
|
12
|
Mazur A, Ayyadevara S, Mainali N, Patchett S, Uden M, Roa RI, Fahy GM, Shmookler Reis RJ. Model biological systems demonstrate the inducibility of pathways that strongly reduce cryoprotectant toxicity. Cryobiology 2024; 115:104881. [PMID: 38437899 DOI: 10.1016/j.cryobiol.2024.104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Cryoprotectant toxicity is a limiting factor for the cryopreservation of many living systems. We were moved to address this problem by the potential of organ vitrification to relieve the severe shortage of viable donor organs available for human transplantation. The M22 vitrification solution is presently the only solution that has enabled the vitrification and subsequent transplantation with survival of large mammalian organs, but its toxicity remains an obstacle to organ stockpiling for transplantation. We therefore undertook a series of exploratory studies to identify potential pretreatment interventions that might reduce the toxic effects of M22. Hormesis, in which a living system becomes more resistant to toxic stress after prior subtoxic exposure to a related stress, was investigated as a potential remedy for M22 toxicity in yeast, in the nematode worm C. elegans, and in mouse kidney slices. In yeast, heat shock pretreatment increased survival by 18-fold after exposure to formamide and by over 9-fold after exposure to M22 at 30 °C; at 0 °C and with two-step addition, treatment with 90% M22 resulted in 100% yeast survival. In nematodes, surveying a panel of pretreatment interventions revealed 3 that conferred nearly total protection from acute whole-worm M22-induced damage. One of these protective pretreatments (exposure to hydrogen peroxide) was applied to mouse kidney slices in vitro and was found to strongly protect nuclear and plasma membrane integrity in both cortical and medullary renal cells exposed to 75-100% M22 at room temperature for 40 min. These studies demonstrate for the first time that endogenous cellular defenses, conserved from yeast to mammals, can be marshalled to substantially ameliorate the toxic effects of one of the most toxic single cryoprotectants and the toxicity of the most concentrated vitrification solution so far described for whole organs.
Collapse
Affiliation(s)
- Anna Mazur
- Dept. of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR, 72205, USA
| | - Srinivas Ayyadevara
- Dept. of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR, 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock AR, 72205, USA
| | - Nirjal Mainali
- Dept. of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR, 72205, USA
| | - Stephanie Patchett
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Matthew Uden
- Department of Psychology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Roberto I Roa
- 21st Century Medicine, Inc., Fontana, CA, 92336, USA
| | | | - Robert J Shmookler Reis
- Dept. of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR, 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock AR, 72205, USA.
| |
Collapse
|
13
|
Gogishvili D, Illes-Toth E, Harris MJ, Hopley C, Teunissen CE, Abeln S. Structural flexibility and heterogeneity of recombinant human glial fibrillary acidic protein (GFAP). Proteins 2024; 92:649-664. [PMID: 38149328 DOI: 10.1002/prot.26656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is a promising biomarker for brain and spinal cord disorders. Recent studies have highlighted the differences in the reliability of GFAP measurements in different biological matrices. The reason for these discrepancies is poorly understood as our knowledge of the protein's 3-dimensional conformation, proteoforms, and aggregation remains limited. Here, we investigate the structural properties of GFAP under different conditions. For this, we characterized recombinant GFAP proteins from various suppliers and applied hydrogen-deuterium exchange mass spectrometry (HDX-MS) to provide a snapshot of the conformational dynamics of GFAP in artificial cerebrospinal fluid (aCSF) compared to the phosphate buffer. Our findings indicate that recombinant GFAP exists in various conformational species. Furthermore, we show that GFAP dimers remained intact under denaturing conditions. HDX-MS experiments show an overall decrease in H-bonding and an increase in solvent accessibility of GFAP in aCSF compared to the phosphate buffer, with clear indications of mixed EX2 and EX1 kinetics. To understand possible structural interface regions and the evolutionary conservation profiles, we combined HDX-MS results with the predicted GFAP-dimer structure by AlphaFold-Multimer. We found that deprotected regions with high structural flexibility in aCSF overlap with predicted conserved dimeric 1B and 2B domain interfaces. Structural property predictions combined with the HDX data show an overall deprotection and signatures of aggregation in aCSF. We anticipate that the outcomes of this research will contribute to a deeper understanding of the structural flexibility of GFAP and ultimately shed light on its behavior in different biological matrices.
Collapse
Affiliation(s)
- Dea Gogishvili
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Eva Illes-Toth
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Matthew J Harris
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Christopher Hopley
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sanne Abeln
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
Benedetti MC, D'andrea T, Colantoni A, Silachev D, de Turris V, Boussadia Z, Babenko VA, Volovikov EA, Belikova L, Bogomazova AN, Pepponi R, Whye D, Buttermore ED, Tartaglia GG, Lagarkova MA, Katanaev VL, Musayev I, Martinelli S, Fucile S, Rosa A. Cortical neurons obtained from patient-derived iPSCs with GNAO1 p.G203R variant show altered differentiation and functional properties. Heliyon 2024; 10:e26656. [PMID: 38434323 PMCID: PMC10907651 DOI: 10.1016/j.heliyon.2024.e26656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Pathogenic variants in the GNAO1 gene, encoding the alpha subunit of an inhibitory heterotrimeric guanine nucleotide-binding protein (Go) highly expressed in the mammalian brain, have been linked to encephalopathy characterized by different combinations of neurological symptoms, including developmental delay, hypotonia, epilepsy and hyperkinetic movement disorder with life-threatening paroxysmal exacerbations. Currently, there are only symptomatic treatments, and little is known about the pathophysiology of GNAO1-related disorders. Here, we report the characterization of a new in vitro model system based on patient-derived induced pluripotent stem cells (hiPSCs) carrying the recurrent p.G203R amino acid substitution in Gαo, and a CRISPR-Cas9-genetically corrected isogenic control line. RNA-Seq analysis highlighted aberrant cell fate commitment in neuronal progenitor cells carrying the p.G203R pathogenic variant. Upon differentiation into cortical neurons, patients' cells showed reduced expression of early neural genes and increased expression of astrocyte markers, as well as premature and defective differentiation processes leading to aberrant formation of neuronal rosettes. Of note, comparable defects in gene expression and in the morphology of neural rosettes were observed in hiPSCs from an unrelated individual harboring the same GNAO1 variant. Functional characterization showed lower basal intracellular free calcium concentration ([Ca2+]i), reduced frequency of spontaneous activity, and a smaller response to several neurotransmitters in 40- and 50-days differentiated p.G203R neurons compared to control cells. These findings suggest that the GNAO1 pathogenic variant causes a neurodevelopmental phenotype characterized by aberrant differentiation of both neuronal and glial populations leading to a significant alteration of neuronal communication and signal transduction.
Collapse
Affiliation(s)
- Maria Cristina Benedetti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Tiziano D'andrea
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Denis Silachev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690090, Vladivostok, Russia
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Russia
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | - Valeria de Turris
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Zaira Boussadia
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina A. Babenko
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Russia
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | - Egor A. Volovikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
| | - Lilia Belikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
| | - Alexandra N. Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
| | - Rita Pepponi
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Dosh Whye
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center and F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Elizabeth D. Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center and F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Gian Gaetano Tartaglia
- Center for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Maria A. Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435, Moscow, Russia
| | - Vladimir L. Katanaev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690090, Vladivostok, Russia
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | | | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sergio Fucile
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessandro Rosa
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| |
Collapse
|
15
|
Kandpal M, Varshney N, Rawal KS, Jha HC. Gut dysbiosis and neurological modalities: An engineering approach via proteomic analysis of gut-brain axis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:199-248. [PMID: 38762270 DOI: 10.1016/bs.apcsb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
The human gut microbiota is a complex and dynamic community of microorganisms, that influence metabolic, neurodevelopmental, and immune pathways. Microbial dysbiosis, characterized by changes in microbial diversity and relative abundances, is implicated in the development of various chronic neurological and neurodegenerative disorders. These disorders are marked by the accumulation of pathological protein aggregates, leading to the progressive loss of neurons and behavioural functions. Dysregulations in protein-protein interaction networks and signalling complexes, critical for normal brain function, are common in neurological disorders but challenging to unravel, particularly at the neuron and synapse-specific levels. To advance therapeutic strategies, a deeper understanding of neuropathogenesis, especially during the progressive disease phase, is needed. Biomarkers play a crucial role in identifying disease pathophysiology and monitoring disease progression. Proteomics, a powerful technology, shows promise in accelerating biomarker discovery and aiding in the development of novel treatments. In this chapter, we provide an in-depth overview of how proteomic techniques, utilizing various biofluid samples from patients with neurological conditions and diverse animal models, have contributed valuable insights into the pathogenesis of numerous neurological disorders. We also discuss the current state of research, potential challenges, and future directions in proteomic approaches to unravel neuro-pathological conditions.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Kunal Sameer Rawal
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India; Centre for Rural Development & Technology, IIT Indore, Indore, India.
| |
Collapse
|
16
|
Rovnaghi CR, Singhal K, Leib RD, Xenochristou M, Aghaeepour N, Chien AS, Ruiz MO, Dinakarpandian D, Anand KJS. Proteins in scalp hair of preschool children. PSYCH 2024; 6:143-162. [PMID: 39534431 PMCID: PMC11556458 DOI: 10.3390/psych6010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Background (1)Early childhood experiences have long-lasting effects on subsequent mental and physical health, education, and employment. Measurement of these effects relies on insensitive behavioral signs, subjective assessments by adult observers, neuroimaging or neurophysiological studies, or retrospective epidemiologic outcomes. Despite intensive search, the underlying mechanisms for these long-term changes in development and health status remain unknown. Methods (2)We analyzed scalp hair from healthy children and their mothers using an unbiased proteomics platform using tandem mass spectrometry, ultra-performance liquid chromatography, and collision induced dissociation to reveal commonly observed hair proteins with spectral count of 3 or higher. Results (3)We observed 1368 non-structural hair proteins in children, 1438 non-structural hair proteins in mothers, with 1288 proteins showing individual variability. Mothers showed higher numbers of peptide spectral matches and hair proteins compared to children, with important age-related differences between mothers and children. Age-related differences were also observed in children, with differential protein expression patterns between younger (2 years and below) and older children (3-5 years). We observed greater similarity in hair protein patterns between mothers and their biological children as compared to mothers and unrelated children. The top 5% proteins driving population variability represent biological pathways associated with brain development, immune signaling, and stress response regulation. Conclusion (4)Non-structural proteins observed in scalp hair include promising biomarkers to investigate the long-term developmental changes and health status associated with early childhood experiences.
Collapse
Affiliation(s)
- Cynthia R. Rovnaghi
- Child Wellness Lab, Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA
- Stanford University Mass Spectrometry (SUMS) Lab, Stanford University, Stanford, CA
| | - Kratika Singhal
- Stanford University Mass Spectrometry (SUMS) Lab, Stanford University, Stanford, CA
| | - Ryan D. Leib
- Stanford University Mass Spectrometry (SUMS) Lab, Stanford University, Stanford, CA
| | - Maria Xenochristou
- Departments of Anesthesiology (Research), Biomedical Data Science & Pediatrics (Neonatology), Stanford University School of Medicine, Stanford, CA
| | - Nima Aghaeepour
- Departments of Anesthesiology (Research), Biomedical Data Science & Pediatrics (Neonatology), Stanford University School of Medicine, Stanford, CA
| | - Allis S. Chien
- Stanford University Mass Spectrometry (SUMS) Lab, Stanford University, Stanford, CA
| | - Monica O. Ruiz
- Departments of Pediatrics (Critical Care Medicine) and Anesthesiology (by courtesy), Stanford University School of Medicine, Stanford, CA
| | - Deendayal Dinakarpandian
- Department of Medicine (Biomedical Informatics Research), Stanford University School of Medicine, Stanford, CA
| | - Kanwaljeet J. S. Anand
- Child Wellness Lab, Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA
- Stanford University Mass Spectrometry (SUMS) Lab, Stanford University, Stanford, CA
- Departments of Pediatrics (Critical Care Medicine) and Anesthesiology (by courtesy), Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
17
|
Fatmi MK, Wang H, Slotabec L, Wen C, Seale B, Zhao B, Li J. Single-Cell RNA-seq reveals transcriptomic modulation of Alzheimer's disease by activated protein C. Aging (Albany NY) 2024; 16:3137-3159. [PMID: 38385967 PMCID: PMC10929801 DOI: 10.18632/aging.205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Single-Cell RNA sequencing reveals changes in cell population in Alzheimer's disease (AD) model 5xFAD (5x Familial AD mutation) versus wild type (WT) mice. The returned sequencing data was processed through the 10x Genomics CellRanger platform to perform alignment and form corresponding matrix to perform bioinformatic analysis. Alterations in glial cells occurred in 5xFAD versus WT, especially increases in microglia proliferation were profound in 5xFAD. Differential expression testing of glial cells in 5xFAD versus WT revealed gene regulation. Globally, the critical genes implicated in AD progression are upregulated such as Apoe, Ctsb, Trem2, and Tyrobp. Using this differential expression data, GO term enrichment was completed to observe possible biological processes impacted by AD progression. Utilizing anti-inflammatory and cyto-protective recombinant Activated Protein C (APC), we uncover inflammatory processes to be downregulated by APC treatment in addition to recuperation of nervous system processes. Moreover, animal studies demonstrated that administration of recombinant APC significantly attenuated Aβ burden and improved cognitive function of 5xFAD mice. The downregulation of highly expressed AD biomarkers in 5xFAD could provide insight into the mechanisms by which APC administration benefits AD.
Collapse
Affiliation(s)
- Mohammad Kasim Fatmi
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Hao Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Changhong Wen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Blaise Seale
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bi Zhao
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Ji Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
18
|
Zhang J, Liu D, Xiang J, Yang M. Combining Glial Fibrillary Acidic Protein and Neurofilament Light Chain for the Diagnosis of Major Depressive Disorder. Anal Chem 2024; 96:1693-1699. [PMID: 38231554 DOI: 10.1021/acs.analchem.3c04825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Major depressive disorder (MDD) is a prevalent brain disorder affecting more than 2% of the world's population. Due to the lack of well-specific biomarkers, it is difficult to distinguish MDD from other diseases with similar clinical symptoms (such as Alzheimer's disease and cerebral thrombosis). In this work, we provided a strategy to address this issue by constructing a combinatorial biomarker of serum glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL). To achieve the convenient and sensitive detection of two proteins, we developed an electrochemical immunosandwich sensor using two metal-ion-doped carbon dots (Pb-CDs and Cu-CDs) as probes for signal output. Each probe contains approximately 300 Pb2+ or 200 Cu2+, providing excellent signal amplification. This method achieved detection limits of 0.3 pg mL-1 for GFAP and 0.2 pg mL-1 for NFL, lower than most of the reported detection limits. Analysis of real serum samples showed that the concentration ratio of GFAP to NFL, which is associated with the relative degree of brain inflammation and neurodegeneration, is suitable for not only distinguishing MDD from healthy individuals but also specifically distinguishing MDD from Alzheimer's disease and cerebral thrombosis. The good specificity gives the combinatorial GFAP/NFL biomarker broad application prospects in the screening, diagnosis, and treatment of MDD.
Collapse
Affiliation(s)
- JinXia Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Dan Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha 410083, P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
19
|
Al Shahrani M, Gahtani RM, Makkawi M. C-5401331 identified as a novel T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) inhibitor to control acute myeloid leukemia (AML) cell proliferation. Med Oncol 2024; 41:63. [PMID: 38265498 DOI: 10.1007/s12032-023-02296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024]
Abstract
T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is a checkpoint protein expressed in exhausted T-cells during cancer scenarios. This exhaustion may end in T-cell effector dysfunction, resulting in suboptimal control of cancers like acute myeloid leukemia (AML). Use of immune checkpoint inhibitors (ICIs) to block checkpoint receptors such as Tim-3 is an emerging, revolutionary concept in the immuno-oncology therapeutic arena; however, ICIs are not effective on myeloid malignancies. Here, a multifaceted approach is utilized to identify novel compounds that target and inhibit Tim-3 with improved efficacy. High-throughput virtual screening of the ChemBridge small molecule library and molecular dynamics simulation yielded a lead molecule C-5401331 predicted to bind with high affinity and inhibit the activity of Tim-3. In vitro evaluations demonstrated the compound to have anti-proliferative effects on Tim-3-positive populations of THP-1 and HC-5401331 AML cells, inducing early and late phase apoptosis. With further development, the lead molecule identified in this work has potential to aid the natural "gatekeeper" functions of the body in immunocompromised AML cancer patients by successfully hampering the binding of Tim-3 to T-cells.
Collapse
Affiliation(s)
- Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Makkawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
20
|
Balasubramaniam M, Ganne A, Mainali N, Pahal S, Ayyadevara S, Shmookler Reis RJ. Alzheimer's-specific brain amyloid interactome: Neural-network analysis of intra-aggregate crosslinking identifies novel drug targets. iScience 2024; 27:108745. [PMID: 38274404 PMCID: PMC10809092 DOI: 10.1016/j.isci.2023.108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by peri-neuronal amyloid plaque and intra-neuronal neurofibrillary tangles. These aggregates are identified by the immunodetection of "seed" proteins (Aβ1-42 and hyperphosphorylated tau, respectively), but include many other proteins incorporated nonrandomly. Using click-chemistry intra-aggregate crosslinking, we previously modeled amyloid "contactomes" in SY5Y-APPSw neuroblastoma cells, revealing that aspirin impedes aggregate growth and complexity. By an analogous strategy, we now construct amyloid-specific aggregate interactomes of AD and age-matched-control hippocampi. Comparing these interactomes reveals AD-specific interactions, from which neural-network (NN) analyses predict proteins with the highest impact on pathogenic aggregate formation and/or stability. RNAi knockdowns of implicated proteins, in C. elegans and human-cell-culture models of AD, validated those predictions. Gene-Ontology meta-analysis of AD-enriched influential proteins highlighted the involvement of mitochondrial and cytoplasmic compartments in AD-specific aggregation. This approach derives dynamic consensus models of aggregate growth and architecture, implicating highly influential proteins as new targets to disrupt amyloid accrual in the AD brain.
Collapse
Affiliation(s)
| | - Akshatha Ganne
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR 72205, USA
| | - Sonu Pahal
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR 72205, USA
| | - Srinivas Ayyadevara
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA
| | - Robert J. Shmookler Reis
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA
| |
Collapse
|
21
|
Balasubramaniam M, Narasimhappagari J, Liu L, Ganne A, Ayyadevara S, Atluri R, Ayyadevara H, Caldwell G, Shmookler Reis RJ, Barger SW, Griffin WST. Rescue of ApoE4-related lysosomal autophagic failure in Alzheimer's disease by targeted small molecules. Commun Biol 2024; 7:60. [PMID: 38191671 PMCID: PMC10774381 DOI: 10.1038/s42003-024-05767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Homozygosity for the ε4 allele of APOE increases the odds of developing Alzheimer's by 12 to 15 times relative to the most common ε3;ε3 genotype, and its association with higher plaque loads comports with evidence that APOEε4 compromises autophagy. The ApoE4 protein specifically binds a cis element ("CLEAR") in the promoters of several autophagy genes to block their transcription. We used a multifaceted approach to identify a druggable site in ApoE4, and virtual screening of lead-like compounds identified small molecules that specifically bind to this site to impede ApoE4::DNA binding. We validated these molecules both in vitro and in vivo with models expressing ApoE4, including ApoE4 targeted-replacement mice. One compound was able to significantly restore transcription of several autophagy genes and protected against amyloid-like aggregation in a C. elegans AD model. Together, these findings provide proof-of-principle evidence for pharmacological remediation of lysosomal autophagy by ApoE4 via ApoE4-targeted lead molecules that represent a novel tack on neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Ling Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Akshatha Ganne
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Srinivas Ayyadevara
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Ramani Atluri
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Guy Caldwell
- University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Robert J Shmookler Reis
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - W Sue T Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| |
Collapse
|
22
|
Ally M, Sugarman MA, Zetterberg H, Blennow K, Ashton NJ, Karikari TK, Aparicio HJ, Frank B, Tripodis Y, Martin B, Palmisano JN, Steinberg EG, Simkin I, Farrer LA, Jun GR, Turk KW, Budson AE, O'Connor MK, Au R, Goldstein LE, Kowall NW, Killiany R, Stern RA, Stein TD, McKee AC, Qiu WQ, Mez J, Alosco ML. Cross-sectional and longitudinal evaluation of plasma glial fibrillary acidic protein to detect and predict clinical syndromes of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12492. [PMID: 37885919 PMCID: PMC10599277 DOI: 10.1002/dad2.12492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Introduction This study examined plasma glial fibrillary acidic protein (GFAP) as a biomarker of cognitive impairment due to Alzheimer's disease (AD) with and against plasma neurofilament light chain (NfL), and phosphorylated tau (p-tau)181+231. Methods Plasma samples were analyzed using Simoa platform for 567 participants spanning the AD continuum. Cognitive diagnosis, neuropsychological testing, and dementia severity were examined for cross-sectional and longitudinal outcomes. Results Plasma GFAP discriminated AD dementia from normal cognition (adjusted mean difference = 0.90 standard deviation [SD]) and mild cognitive impairment (adjusted mean difference = 0.72 SD), and demonstrated superior discrimination compared to alternative plasma biomarkers. Higher GFAP was associated with worse dementia severity and worse performance on 11 of 12 neuropsychological tests. Longitudinally, GFAP predicted decline in memory, but did not predict conversion to mild cognitive impairment or dementia. Discussion Plasma GFAP was associated with clinical outcomes related to suspected AD and could be of assistance in a plasma biomarker panel to detect in vivo AD.
Collapse
Affiliation(s)
- Madeline Ally
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of PsychologyUniversity of ArizonaTucsonArizonaUSA
| | - Michael A. Sugarman
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Henrik Zetterberg
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCL, UCL Institute of NeurologyUniversity College LondonLondonUK
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Kaj Blennow
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and MaudsleyNHS FoundationLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - Thomas K. Karikari
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Hugo J. Aparicio
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Brandon Frank
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Boston Healthcare SystemJamaica PlainMassachusettsUSA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Brett Martin
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Biostatistics and Epidemiology Data Analytics CenterBoston University School of Public HealthBostonMassachusettsUSA
| | - Joseph N. Palmisano
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Biostatistics and Epidemiology Data Analytics CenterBoston University School of Public HealthBostonMassachusettsUSA
| | - Eric G. Steinberg
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Irene Simkin
- Department of MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Lindsay A. Farrer
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Department of MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
- Department of OphthalmologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Gyungah R. Jun
- Department of MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Katherine W. Turk
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Boston Healthcare SystemJamaica PlainMassachusettsUSA
| | - Andrew E. Budson
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Boston Healthcare SystemJamaica PlainMassachusettsUSA
| | - Maureen K. O'Connor
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeuropsychologyEdith Nourse Rogers Memorial Veterans HospitalBedfordMassachusettsUSA
| | - Rhoda Au
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Lee E. Goldstein
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Biostatistics and Epidemiology Data Analytics CenterBoston University School of Public HealthBostonMassachusettsUSA
- Department of OphthalmologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of Biomedical, Electrical, and Computer EngineeringBoston University College of EngineeringBostonMassachusettsUSA
| | - Neil W. Kowall
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Boston Healthcare SystemJamaica PlainMassachusettsUSA
- Department of Pathology and Laboratory MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Ronald Killiany
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Center for Biomedical ImagingBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Robert A. Stern
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurosurgeryBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Thor D. Stein
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Boston Healthcare SystemJamaica PlainMassachusettsUSA
- Department of Pathology and Laboratory MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Bedford Healthcare SystemBedfordMassachusettsUSA
| | - Ann C. McKee
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Boston Healthcare SystemJamaica PlainMassachusettsUSA
- Department of Pathology and Laboratory MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- US Department of Veterans AffairsVA Bedford Healthcare SystemBedfordMassachusettsUSA
| | - Wei Qiao Qiu
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of PsychiatryBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of Pharmacology and Experimental TherapeuticsBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Michael L. Alosco
- Boston University Alzheimer's Disease Research Center and CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| |
Collapse
|
23
|
Zou Y, Li L, Guan L, Ma C, Yu S, Ma X, Mao C, Gao J, Qiu L. Research trends and hotspots of glial fibrillary acidic protein within the area of Alzheimer's disease: a bibliometric analysis. Front Aging Neurosci 2023; 15:1196272. [PMID: 37829140 PMCID: PMC10565806 DOI: 10.3389/fnagi.2023.1196272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Objective Our aim was to analyze the trends and hotspots on glial fibrillary acidic protein (GFAP) within the area of Alzheimer's disease (AD) by using a bibliometric method, which is currently missing. Methods All articles and reviews on GFAP within the area of AD from inception to December 31, 2022, were searched from the Web of Science Core Collection. Full records were derived, imported into Microsoft Excel, and analyzed by BIBLIOMETRC, VOSviewer, and CiteSpace. Results In total, 2,269 publications, including 2,166 articles, were ultimately included. The number of publications from 81 countries/regions and 527 academic journals increased annually. The top three prolific countries and institutions were the USA, China, and England, the University of Gothenburg (Sweden), Universidade Federal Rio Grande do Sul (Brasilia), and UCL Queen Square Institute of Neurology (England). Henrik Zetterberg from the University of Gothenburg, Kaj Blennow from the University of Gothenburg, and Alexei Verkhratsky from the University of Manchester were the top three prolific and cited authors; Journal of Alzheimer's Disease, Brain Research, and Neuroscience contributed the most publications. The top key areas of research included "molecular, biology, and genetics" and "molecular, biology, and immunology," and the top published and linked meaningful keywords included oxidative stress, inflammation/neuroinflammation, microglia, hippocampus, amyloid, cognitive impairment, tau, and dysfunction. Conclusion Based on the bibliometric analysis, the number of publications on GFAP within the area of AD has been rapidly increasing, especially in the past several years. Oxidative stress and inflammation are research hotspots, and GFAP in body fluids, especially blood, could be used for large-scale screening for AD.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Lei Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Lihua Guan
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Chaochao Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Medical Science Research Center (MRC), Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chenhui Mao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Campisi A, Sposito G, Grasso R, Bisicchia J, Spatuzza M, Raciti G, Scordino A, Pellitteri R. Effect of Astaxanthin on Tissue Transglutaminase and Cytoskeletal Protein Expression in Amyloid-Beta Stressed Olfactory Ensheathing Cells: Molecular and Delayed Luminescence Studies. Antioxidants (Basel) 2023; 12:antiox12030750. [PMID: 36978998 PMCID: PMC10045022 DOI: 10.3390/antiox12030750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Astaxanthin, a natural compound of Haematococcus pluvialis, possesses antioxidant, anti-inflammatory, anti-tumor and immunomodulatory activities. It also represents a potential therapeutic in Alzheimer’s disease (AD), that is related to oxidative stress and agglomeration of proteins such as amyloid-beta (Aβ). Aβ is a neurotoxic protein and a substrate of tissue transglutaminase (TG2), an ubiquitary protein involved in AD. Herein, the effect of astaxanthin pretreatment on olfactory ensheathing cells (OECs) exposed to Aβ(1–42) or by Aβ(25–35) or Aβ(35–25), and on TG2 expression were assessed. Vimentin, GFAP, nestin, cyclin D1 and caspase-3 were evaluated. ROS levels and the percentage of cell viability were also detected. In parallel, delayed luminescence (DL) was used to monitor mitochondrial status. ASTA reduced TG2, GFAP and vimentin overexpression, inhibiting cyclin D1 levels and apoptotic pathway activation which induced an increase in the nestin levels. In addition, significant changes in DL intensities were particularly observed in OECs exposed to Aβ toxic fragment (25–35), that completely disappear when OECs were pre-incubated in astaxantin. Therefore, we suggest that ASTA pre-treatment might represent an innovative mechanism to contrast TG2 overexpression in AD.
Collapse
Affiliation(s)
- Agatina Campisi
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- CERNUT, Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
- Correspondence: ; Tel.: +39-095-738-4070; Fax: +39-095-738-4220
| | - Giovanni Sposito
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- CERNUT, Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Rosaria Grasso
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Julia Bisicchia
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Michela Spatuzza
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, 95126 Catania, Italy
| | - Giuseppina Raciti
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Agata Scordino
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, 95123 Catania, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, 95126 Catania, Italy
| |
Collapse
|
25
|
Mafuika SN, Naicker T, Harrichandparsad R, Lazarus L. The potential of serum S100 calcium-binding protein B and glial fibrillary acidic protein as biomarkers for traumatic brain injury. TRANSLATIONAL RESEARCH IN ANATOMY 2022. [DOI: 10.1016/j.tria.2022.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|