1
|
Taggi V, Schäfer AM, Kinzi J, Ritz D, Seibert I, Oswald S, Zu Schwabedissen HEM. Targeted and Untargeted Proteomics-based Comparison of Adenoviral Infected hCMEC/D3 and hBMEC as a Human Brain Endothelial Cells to Study the OATP2B1 Transporter. Mol Neurobiol 2025:10.1007/s12035-025-04807-7. [PMID: 40085356 DOI: 10.1007/s12035-025-04807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
The blood-brain barrier (BBB) is essential for central nervous system (CNS) homeostasis by regulating permeability between the bloodstream and brain. This study evaluates the immortalized human brain capillary endothelial cell lines hCMEC/D3 and hBMEC for their use as a brain endothelial cells to investigate the OATP2B1 transporter following adenoviral infection. We assessed the impact of adenoviral-mediated OATP2B1 expression on BBB marker proteins and transporters using targeted and untargeted mass spectrometry-based proteomics. Targeted proteomics identified measurable levels of endothelial markers PECAM1 and CDH5 in hCMEC/D3, whereas these markers were undetectable in hBMEC. Both cell lines exhibited similar Pgp levels, while BCRP was absent in hCMEC/D3. The expression of uptake transporters was also evaluated, revealing comparable levels of GLUT1, ENT1, MCT1 and OAT7 in hCMEC/D3 and hBMEC. Although OATP2B1 levels did not significantly increase post-infection in targeted proteomics, untargeted proteomics confirmed enhanced OATP2B1 expression. Other BBB markers and transporters remained unaffected in both cell lines. Notably, hCMEC/D3 demonstrated a stronger BBB phenotype, indicated by higher expression of BBB markers and transporters, while adenoviral infection was more effective in hBMEC. The differences between targeted and untargeted proteomics underscore the need for diverse methods to verify protein expression levels. This comparative analysis provides insights into the strengths and limitations of hCMEC/D3 and hBMEC for BBB research, particularly regarding drug transport mechanisms.
Collapse
Affiliation(s)
- Valerio Taggi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Anima M Schäfer
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Danilo Ritz
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | | |
Collapse
|
2
|
Pollinzi A, Mirdamadi K, Karimian Pour N, Asthana-Nijjar R, Lee D, Nevo O, Piquette-Miller M. Decreased expression of P-glycoprotein in the placenta of women with autoimmune disease. Drug Metab Dispos 2025; 53:100031. [PMID: 40023574 DOI: 10.1016/j.dmd.2024.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/25/2024] [Indexed: 03/04/2025] Open
Abstract
Autoimmune diseases (ADs), such as systemic lupus erythematosus (SLE), require multiple medications to ensure maternal-fetal health during pregnancy. These medications are often substrates for placental transporters that could cross over to the fetal compartment. However, the effects of ADs on placental transporters remain poorly understood. This study aimed to investigate the impact of ADs on placental transporters and key inflammatory cytokines. Human preterm and term placentas from AD-affected women (n = 28) and gestational age-matched controls (n = 38) were collected. The placentas were examined for transporter expression via quantitative real-time PCR and immunodetection. Subgroup analysis and untargeted proteomic analysis of samples from patients with SLE were performed. P-glycoprotein (P-gp/ABCB1) and organic anion transporter 4 (OAT4/SLC22A11) mRNA expression were significantly decreased and expression of T helper 17- associated cytokines were increased in preterm and term AD placenta relative to controls. P-gp protein expression was also downregulated in preterm, but not in term AD placenta. Subgroup analysis of SLE also detected downregulation of P-gp and OAT4 at the mRNA level in preterm samples. Proteomic analysis of SLE and control samples indicated global changes in proteins related to processes like inflammation, oxidative stress, angiogenesis, and hemostasis. These findings elucidate that ADs such as SLE are associated with the downregulation of the ABC transporter P-gp in the placenta as well as global changes to the placenta proteome. Dysregulation of cytokines and associated pathways was also observed and postulated to cause changes in placental transporters. Future studies that validate these mechanisms could offer potential strategies to mitigate inflammation-mediated alterations in placental transporters, ultimately improving fetal and neonatal health. SIGNIFICANCE STATEMENT: Autoimmune diseases have significant effects on the placenta, influencing pregnancy outcomes and the effectiveness of prescribed medications. The study revealed that autoimmune diseases induce inflammatory cytokines in the placenta and were associated with a significant downregulation of P-glycoprotein. Additionally, in patients affected by lupus, proteomics uncovered the enrichment of pathways associated with placental damage and dysfunction. This work will help inform care plans for these patients by identifying clinically relevant proteins that are affected by the disease, improving maternal-fetal outcomes.
Collapse
Affiliation(s)
- Angela Pollinzi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Kamelia Mirdamadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | | | | | - Dennis Lee
- Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | - Ori Nevo
- Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | | |
Collapse
|
3
|
Taggi V, Schäfer AM, Oswald S, Kinzi JH, Seibert I, Al-Khatib A, Schwabedissen HEMZ. Pregnenolone Sulfate Permeation at the Blood-Brain Barrier is Independent of OATP2B1-In Vivo and In Vitro Insights. Biopharm Drug Dispos 2025; 46:33-46. [PMID: 40070341 DOI: 10.1002/bdd.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/17/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Sulfated steroids such as pregnenolone sulfate (PregS) are important for neuronal development and cognitive functions. Given the hydrophilic sulfate moiety, it is assumed that PregS requires an active transport mechanism to cross the blood-brain barrier (BBB). The human organic anion transporting polypeptide (OATP)2B1 has been previously shown to transport sulfated steroids and is therefore a proposed candidate for the transport of PregS. In this study, we aimed to investigate the role of OATP2B1 in the uptake of PregS in the brain. Tritium-labeled PregS was intravenously administered to humanized (SLCO2B1+/+), knockout (rSlco2b1-/-), and wildtype (WT) rats. Accumulation of the radiotracer was analyzed in rat brain, liver, small intestine, kidney, heart, and muscle. Moreover, transporter expression in brain microvessels was assessed through targeted proteomics and Western blot analysis. The involvement of hOATP2B1 in PregS transport across the BBB was further studied using a hBMEC-based in vitro BBB model. Our results indicated no significant difference in accumulation of the radiotracer among the different rat genotypes in the brain or in other tissues. In line with what we observed in the rat model, the subsequent in vitro study showed no involvement of hOATP2B1 in the transport of PregS. Taken together, our findings highlight the species-specific differences in transporter expression and suggest that OATP2B1 does not mediate PregS uptake across the BBB.
Collapse
Affiliation(s)
- Valerio Taggi
- Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland
| | - Anima M Schäfer
- Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Jonny Hanna Kinzi
- Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland
| | - Alaa Al-Khatib
- Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland
| | | |
Collapse
|
4
|
Kuhn E, Srinageshwar B, Story DT, Swanson D, Sharma A, Dunbar GL, Rossignol J. Delivery of PAMAM dendrimers and dendriplexes across natural barriers (blood-brain barrier and placental barrier) in healthy pregnant mice. DISCOVER NANO 2024; 19:148. [PMID: 39264474 PMCID: PMC11393257 DOI: 10.1186/s11671-024-04105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Gene therapy is an important tool for treating fetal diseases that allows for the delivery and integration of therapeutic genes into the genome of cells carrying mutations. Nanomolecules, like PAMAM dendrimers, have recently come into wider use for carrying vectors as they have several advantages over viral vectors. Namely, (1) tunable size and surface chemistry, (2) uniform size, (3) the ability to target specific tissues, and (4) the ability to carry large biomolecules and drugs. Recently, we demonstrated that 4th generation (G4) PAMAM dendrimer with a cystamine core and a non-toxic surface having 90% -OH and 10% -NH2 groups (D-Cys) could cross the blood-brain barrier following injection into the bloodstream. In the current study, as a proof of concept, we delivered the dendrimers alone (D-Cys) tagged with Cy5.5 (D-Cys-cy5.5) to healthy pregnant C57BL/6J mice to determine the fate of these dendrimers in the pregnant mice as well as in the fetus. Systematic diffusion of the D-Cys-cy5.5 was evaluated on gestational day 17 (3 days after injection) using in vivo imaging. This revealed that the dendrimer was taken up into circulation and away from the injection site. Analysis of sections by fluorescence microscopy showed that D-Cys-cy5.5 was able to successfully cross the maternal blood-brain barrier. However, analysis of the fetal brains failed to detect dendrimers in the central nervous system (CNS). Instead, they appeared to be retained in the placenta. This is one of the first studies to analyze the distribution of surface-modified PAMAM dendrimer in the pregnant mouse and fetus following systemic injection.
Collapse
Affiliation(s)
- Eric Kuhn
- College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Bhairavi Srinageshwar
- College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Darren T Story
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Department of Psychology, Saginaw Valley State University, University Center, MI, 48710, USA
| | - Douglas Swanson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Ajit Sharma
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Gary L Dunbar
- College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Julien Rossignol
- College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, 48859, USA.
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| |
Collapse
|
5
|
Nguyen HD, Kim MS. In silico exploration of promising heterocyclic molecules against both acetylcholinesterase and butyrylcholinesterase enzymes. J Biomol Struct Dyn 2024; 42:7128-7149. [PMID: 37477246 DOI: 10.1080/07391102.2023.2238068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
We aimed to further explore the relationship between heterocyclic molecules and their associated biological activities for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. A dataset of 36 heterocycles was used to predict the activity of AChE and BChE inhibitors (the pIC50 values ranged from 7.84 to 12.49). A quantitative structure-activity relationship (QSAR) study was generated with the help of four different models (BMA, MNLR, MLR, and ANN). Four of the models were statistically acceptable based on both internal and external validation. The descriptors used in the models were similar to the X-ray structures of the target-ligand complexes, which made it possible to predict the pIC50 for AChE and BChE enzymes. Five selected molecules (compounds 6 (C21H21F3N4O), compound 7 (C22H23F3N4O), and compound 8 (C22H23F3N4O2) belong to the oxadiazole derivative group; compound 16 (C17H13ClN2O3) is classified into the chemical structures of different N, O, and S-based heterocycle groups; and compound 25 (C19H17NO2) pertains to the pyrimidine derivative group) possessed high pIC50 values for AChE and BChE enzymes (pIC50 values for AChE and BChE ranged from 9.01 to 10.32). The range of docking scores between the AChE and BChE receptors and their respective candidates was from -8.1 to -9.2 kcal/mol. The pharmacokinetics, biological activities, and physicochemical properties of five selected compounds supported their ability to protect against AD because they are not toxic, have a cholinergic effect, can cross the blood-brain barrier, and are well absorbed by the gastrointestinal tract.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
6
|
Taggi V, Schäfer AM, Dolce A, Meyer Zu Schwabedissen HE. A face-to-face comparison of the BBB cell models hCMEC/D3 and hBMEC for their applicability to adenoviral expression of transporters. J Neurochem 2024; 168:2611-2620. [PMID: 38735840 DOI: 10.1111/jnc.16125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
The blood-brain barrier (BBB) is a structure mainly formed by brain capillary endothelial cells (BCEC) whose role is to regulate the exchange of compounds between the blood and the brain. In this process efflux and uptake transporters play a key role. Aim of this study was to compare the two previously established cell lines hCMEC/D3 and hBMEC as BBB cell models for the application of an adenoviral system to transiently express OATP2B1 and Pgp. Comparison of hCMEC/D3 and hBMEC mRNA and protein levels of BBB markers showed a unique expression pattern for each cell line. While showing similar expression of the efflux transporter BCRP, transferrin receptor (TFRC) and of the tight junctions proteins Occludin and ZO-1, hCMEC/D3 displayed higher levels of the endothelial marker PECAM1, VE-cadherin, Von Willebrand Factor (VWF) and of the efflux transporter Pgp. Moreover, measuring integrity of the monolayer by determining the Trans-Endothelial Electrical Resistance (TEER), electrical capacitance (CCl), and inulin apparent permeability coefficient (Papp) revealed higher TEER and lower CCl for hBMEC but comparable Papp in the two cell lines. Following adenoviral infection, enhanced OATP2B1 and Pgp expression and functionality could be observed only in hBMEC. Importantly, the adenoviral expression system did not affect expression of BBB markers and permeability in both cell lines. Taken together, our results provide first evidence that hBMEC is an applicable human BBB cell model in which adenoviral infection can be used to transiently express and investigate transporters of interest.
Collapse
Affiliation(s)
- Valerio Taggi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Bas, Basel, Switzerland
| | - Anima M Schäfer
- Biopharmacy, Department of Pharmaceutical Sciences, University of Bas, Basel, Switzerland
| | - Asaél Dolce
- Biopharmacy, Department of Pharmaceutical Sciences, University of Bas, Basel, Switzerland
| | | |
Collapse
|
7
|
Thévenod F, Lee WK. Cadmium transport by mammalian ATP-binding cassette transporters. Biometals 2024; 37:697-719. [PMID: 38319451 PMCID: PMC11101381 DOI: 10.1007/s10534-024-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Cellular responses to toxic metals depend on metal accessibility to intracellular targets, reaching interaction sites, and the intracellular metal concentration, which is mainly determined by uptake pathways, binding/sequestration and efflux pathways. ATP-binding cassette (ABC) transporters are ubiquitous in the human body-usually in epithelia-and are responsible for the transfer of indispensable physiological substrates (e.g. lipids and heme), protection against potentially toxic substances, maintenance of fluid composition, and excretion of metabolic waste products. Derailed regulation and gene variants of ABC transporters culminate in a wide array of pathophysiological disease states, such as oncogenic multidrug resistance or cystic fibrosis. Cadmium (Cd) has no known physiological role in mammalians and poses a health risk due to its release into the environment as a result of industrial activities, and eventually passes into the food chain. Epithelial cells, especially within the liver, lungs, gastrointestinal tract and kidneys, are particularly susceptible to the multifaceted effects of Cd because of the plethora of uptake pathways available. Pertinent to their broad substrate spectra, ABC transporters represent a major cellular efflux pathway for Cd and Cd complexes. In this review, we summarize current knowledge concerning transport of Cd and its complexes (mainly Cd bound to glutathione) by the ABC transporters ABCB1 (P-glycoprotein, MDR1), ABCB6, ABCC1 (multidrug resistance related protein 1, MRP1), ABCC7 (cystic fibrosis transmembrane regulator, CFTR), and ABCG2 (breast cancer related protein, BCRP). Potential detoxification strategies underlying ABC transporter-mediated efflux of Cd and Cd complexes are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology & ZBAF, Witten/Herdecke University, 58453, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany.
| |
Collapse
|
8
|
Kotta-Loizou I, Pritsa A, Antasouras G, Vasilopoulos SN, Voulgaridou G, Papadopoulou SK, Coutts RHA, Lechouritis E, Giaginis C. Fetus Exposure to Drugs and Chemicals: A Holistic Overview on the Assessment of Their Transport and Metabolism across the Human Placental Barrier. Diseases 2024; 12:114. [PMID: 38920546 PMCID: PMC11202568 DOI: 10.3390/diseases12060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The placenta exerts a crucial role in fetus growth and development during gestation, protecting the fetus from maternal drugs and chemical exposure. However, diverse drugs and chemicals (xenobiotics) can penetrate the maternal placental barrier, leading to deleterious, adverse effects concerning fetus health. Moreover, placental enzymes can metabolize drugs and chemicals into more toxic compounds for the fetus. Thus, evaluating the molecular mechanisms through which drugs and chemicals transfer and undergo metabolism across the placental barrier is of vital importance. In this aspect, this comprehensive literature review aims to provide a holistic approach by critically summarizing and scrutinizing the potential molecular processes and mechanisms governing drugs and chemical transfer and metabolism across the placental barrier, which may lead to fetotoxicity effects, as well as analyzing the currently available experimental methodologies used to assess xenobiotics placental transfer and metabolism. METHODS A comprehensive and in-depth literature review was conducted in the most accurate scientific databases such as PubMed, Scopus, and Web of Science by using relevant and effective keywords related to xenobiotic placental transfer and metabolism, retrieving 8830 published articles until 5 February 2024. After applying several strict exclusion and inclusion criteria, a final number of 148 relevant published articles were included. RESULTS During pregnancy, several drugs and chemicals can be transferred from the mother to the fetus across the placental barrier by either passive diffusion or through placental transporters, resulting in fetus exposure and potential fetotoxicity effects. Some drugs and chemicals also appear to be metabolized across the placental barrier, leading to more toxic products for both the mother and the fetus. At present, there is increasing research development of diverse experimental methodologies to determine the potential molecular processes and mechanisms of drug and chemical placental transfer and metabolism. All the currently available methodologies have specific strengths and limitations, highlighting the strong demand to utilize an efficient combination of them to obtain reliable evidence concerning drug and chemical transfer and metabolism across the placental barrier. To derive the most consistent and safe evidence, in vitro studies, ex vivo perfusion methods, and in vivo animal and human studies can be applied together with the final aim to minimize potential fetotoxicity effects. CONCLUSIONS Research is being increasingly carried out to obtain an accurate and safe evaluation of drug and chemical transport and metabolism across the placental barrier, applying a combination of advanced techniques to avoid potential fetotoxic effects. The improvement of the currently available techniques and the development of novel experimental protocols and methodologies are of major importance to protect both the mother and the fetus from xenobiotic exposure, as well as to minimize potential fetotoxicity effects.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Agathi Pritsa
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (G.V.); (S.K.P.)
| | - Georgios Antasouras
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (G.A.); (E.L.); (C.G.)
| | - Spyridon N. Vasilopoulos
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece;
| | - Gavriela Voulgaridou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (G.V.); (S.K.P.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (G.V.); (S.K.P.)
| | - Robert H. A. Coutts
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK;
| | - Eleftherios Lechouritis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (G.A.); (E.L.); (C.G.)
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Lemnos, Greece; (G.A.); (E.L.); (C.G.)
| |
Collapse
|
9
|
Bakhireva LN, Solomon E, Roberts MH, Ma X, Rai R, Wiesel A, Jacobson SW, Weinberg J, Milligan ED. Independent and Combined Effects of Prenatal Alcohol Exposure and Prenatal Stress on Fetal HPA Axis Development. Int J Mol Sci 2024; 25:2690. [PMID: 38473937 PMCID: PMC10932119 DOI: 10.3390/ijms25052690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Prenatal alcohol exposure (PAE) and prenatal stress (PS) are highly prevalent conditions known to affect fetal programming of the hypothalamic-pituitary-adrenal (HPA) axis. The objectives of this study were to assess the effect of light PAE, PS, and PAE-PS interaction on fetal HPA axis activity assessed via placental and umbilical cord blood biomarkers. Participants of the ENRICH-2 cohort were recruited during the second trimester and classified into the PAE and unexposed control groups. PS was assessed by the Perceived Stress Scale. Placental tissue was collected promptly after delivery; gene and protein analysis for 11β-HSD1, 11β-HSD2, and pCRH were conducted by qPCR and ELISA, respectively. Umbilical cord blood was analyzed for cortisone and cortisol. Pearson correlation and multivariable linear regression examined the association of PAE and PS with HPA axis biomarkers. Mean alcohol consumption in the PAE group was ~2 drinks/week. Higher PS was observed in the PAE group (p < 0.01). In multivariable modeling, PS was associated with pCRH gene expression (β = 0.006, p < 0.01), while PAE was associated with 11β-HSD2 protein expression (β = 0.56, p < 0.01). A significant alcohol-by-stress interaction was observed with respect to 11β-HSD2 protein expression (p < 0.01). Results indicate that PAE and PS may independently and in combination affect fetal programming of the HPA axis.
Collapse
Affiliation(s)
- Ludmila N. Bakhireva
- College of Pharmacy Substance Use Research and Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.H.R.); (X.M.); (R.R.); (A.W.)
| | - Elizabeth Solomon
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA; (E.S.); (E.D.M.)
| | - Melissa H. Roberts
- College of Pharmacy Substance Use Research and Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.H.R.); (X.M.); (R.R.); (A.W.)
| | - Xingya Ma
- College of Pharmacy Substance Use Research and Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.H.R.); (X.M.); (R.R.); (A.W.)
| | - Rajani Rai
- College of Pharmacy Substance Use Research and Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.H.R.); (X.M.); (R.R.); (A.W.)
| | - Alexandria Wiesel
- College of Pharmacy Substance Use Research and Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (M.H.R.); (X.M.); (R.R.); (A.W.)
| | - Sandra W. Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Erin D. Milligan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA; (E.S.); (E.D.M.)
| |
Collapse
|
10
|
Wevers NR, De Vries HE. Microfluidic models of the neurovascular unit: a translational view. Fluids Barriers CNS 2023; 20:86. [PMID: 38008744 PMCID: PMC10680291 DOI: 10.1186/s12987-023-00490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023] Open
Abstract
The vasculature of the brain consists of specialized endothelial cells that form a blood-brain barrier (BBB). This barrier, in conjunction with supporting cell types, forms the neurovascular unit (NVU). The NVU restricts the passage of certain substances from the bloodstream while selectively permitting essential nutrients and molecules to enter the brain. This protective role is crucial for optimal brain function, but presents a significant obstacle in treating neurological conditions, necessitating chemical modifications or advanced drug delivery methods for most drugs to cross the NVU. A deeper understanding of NVU in health and disease will aid in the identification of new therapeutic targets and drug delivery strategies for improved treatment of neurological disorders.To achieve this goal, we need models that reflect the human BBB and NVU in health and disease. Although animal models of the brain's vasculature have proven valuable, they are often of limited translational relevance due to interspecies differences or inability to faithfully mimic human disease conditions. For this reason, human in vitro models are essential to improve our understanding of the brain's vasculature under healthy and diseased conditions. This review delves into the advancements in in vitro modeling of the BBB and NVU, with a particular focus on microfluidic models. After providing a historical overview of the field, we shift our focus to recent developments, offering insights into the latest achievements and their associated constraints. We briefly examine the importance of chip materials and methods to facilitate fluid flow, emphasizing their critical roles in achieving the necessary throughput for the integration of microfluidic models into routine experimentation. Subsequently, we highlight the recent strides made in enhancing the biological complexity of microfluidic NVU models and propose recommendations for elevating the biological relevance of future iterations.Importantly, the NVU is an intricate structure and it is improbable that any model will fully encompass all its aspects. Fit-for-purpose models offer a valuable compromise between physiological relevance and ease-of-use and hold the future of NVU modeling: as simple as possible, as complex as needed.
Collapse
Affiliation(s)
- Nienke R Wevers
- MIMETAS BV, De Limes 7, Oegstgeest, 2342 DH, The Netherlands.
| | - Helga E De Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neuroinfection and Neuroinflammation, De Boelelaan 1117, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Zhang Y, Lv J, Fan YJ, Tao L, Xu J, Tang W, Sun N, Zhao LL, Xu DX, Huang Y. Evaluating the Effect of Gestational Exposure to Perfluorohexane Sulfonate on Placental Development in Mice Combining Alternative Splicing and Gene Expression Analyses. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117011. [PMID: 37995155 PMCID: PMC10666825 DOI: 10.1289/ehp13217] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Perfluorohexane sulfonate (PFHxS) is a frequently detected per- and polyfluoroalkyl substance in most populations, including in individuals who are pregnant, a period critical for early life development. Despite epidemiological evidence of exposure, developmental toxicity, particularly at realistic human exposures, remains understudied. OBJECTIVES We evaluated the effect of gestational exposure to human-relevant body burden of PFHxS on fetal and placental development and explored mechanisms of action combining alternative splicing (AS) and gene expression (GE) analyses. METHODS Pregnant ICR mice were exposed to 0, 0.03, and 0.3 μ g / kg / day from gestational day 7 to day 17 via oral gavage. Upon euthanasia, PFHxS distribution was measured using liquid chromatography-tandem mass spectrometry. Maternal and fetal phenotypes were recorded, and histopathology was examined for placenta impairment. Multiomics was adopted by combining AS and GE analyses to unveil disruptions in mRNA quality and quantity. The key metabolite transporters were validated by quantitative real-time PCR (qRT-PCR) for quantification and three-dimensional (3D) structural simulation by AlphaFold2. Targeted metabolomics based on liquid chromatography-tandem mass spectrometry was used to detect amino acid and amides levels in the placenta. RESULTS Pups developmentally exposed to PFHxS exhibited signs of intrauterine growth restriction (IUGR), characterized by smaller fetal weight and body length (p < 0.01 ) compared to control mice. PFHxS concentration in maternal plasma was 5.01 ± 0.54 ng / mL . PFHxS trans-placenta distribution suggested dose-dependent transfer through placental barrier. Histopathology of placenta of exposed dams showed placental dysplasia, manifested with an attenuated labyrinthine layer area and deescalated blood sinus counts and placental vascular development index marker CD34. Combined GE and AS analyses pinpointed differences in genes associated with key biological processes of placental development, proliferation, metabolism, and transport in placenta of exposed dams compared to that of control dams. Further detection of placental key transporter gene expression, protein structure simulation, and amino acid and amide metabolites levels suggested that PFHxS exposure during pregnancy led to impairment of placental amino acid transportation. DISCUSSION The findings from this study suggest that exposure to human-relevant very-low-dose PFHxS during pregnancy in mice caused IUGR, likely via downregulating of placental amino acid transporters, thereby impairing placental amino acid transportation, resulting in impairment of placental development. Our findings confirm epidemiological findings and call for future attention on the health risk of this persistent yet ubiquitous chemical in the early developmental stage and provide a new approach for understanding gene expression from both quantitative and qualitative omics approaches in toxicological studies. https://doi.org/10.1289/EHP13217.
Collapse
Affiliation(s)
- Yihao Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jia Lv
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yi-Jun Fan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Department of Gynecology and Obstetrics, Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Tao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jingjing Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Weitian Tang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Nan Sun
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the PRC, Hefei, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the PRC, Hefei, China
| |
Collapse
|
12
|
Dai W, Pollinzi A, Piquette-Miller M. Use of Traditional and Proteomic Methods in the Assessment of a Preclinical Model of Preeclampsia. Drug Metab Dispos 2023; 51:1308-1315. [PMID: 37286362 DOI: 10.1124/dmd.122.001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/27/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
Recent studies have demonstrated downregulation of breast cancer resistance protein (BCRP/ABCG2) in placenta obtained from women with preeclampsia (PE). BCRP is highly expressed in placenta and plays an important role in preventing xenobiotics from entering the fetal compartment. Although PE is often therapeutically managed with drugs that are substrates of BCRP, there are limited studies on the impact of PE on fetal drug exposure. Due to ethical concerns, use of preclinical models is an important approach. Thus, by using proteomic and traditional methods, we characterized transporter changes in an immunologic rat model of PE to determine its utility and predictive value for future drug disposition studies. PE was induced by daily administration of low-dose endotoxin (0.01-0.04 mg/kg) to rats on gestational days (GD) 13-16, urine was collected, and rats were sacrificed on GD17 or GD18. PE rats shared similar phenotype to PE patients, including proteinuria, and increased levels of tumor necrosis factor α and interleukin 6. Transcript and protein levels of Bcrp were significantly downregulated in placenta of PE rats on GD18. multidrug resistance 1a, multidrug resistance 1b, and organic anion transporting polypeptide 2B1 mRNA were also decreased in PE. Proteomics revealed activation of various hallmarks of PE including immune activation, oxidative stress, endoplasmic reticulum stress and apoptosis. Overall, our results demonstrated that the immunologic PE rat model exhibits numerous similarities to human PE along with dysregulation of placental transporters. Therefore, this model may be useful in examining the impact of PE on the maternal and fetal disposition of BCRP substrates. SIGNIFICANCE STATEMENT: Fully characterizing preclinical models of disease is necessary to determine their validity to human conditions. Combining traditional and proteomic methods of model characterization, we identified numerous phenotypic similarities between our model of preeclampsia and human disease. The alignment with human pathophysiological changes allows for more confident use of this preclinical model.
Collapse
Affiliation(s)
- Wanying Dai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Angela Pollinzi
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Nguyen HD. In silico identification of novel heterocyclic compounds combats Alzheimer's disease through inhibition of butyrylcholinesterase enzymatic activity. J Biomol Struct Dyn 2023; 42:10890-10910. [PMID: 37723904 DOI: 10.1080/07391102.2023.2259482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Increasing evidence indicates that heterocyclic molecules possess properties against butyrylcholinesterase (BChE) enzymatic activity, which is a potential therapeutic target for Alzheimer's disease (AD). Thus, this study aimed to further evaluate the relationship between heterocyclic molecules and their biological activities. A dataset of 38 selective and potent heterocyclic compounds (-log[the half‑maximal inhibitory concentration (pIC50)]) values ranging from 8.02 to 10.05) was applied to construct a quantitative structure-activity relationship (QSAR) study, including Bayesian model average (BMA), artificial neural network (ANN), multiple nonlinear regression (MNLR), and multiple linear regression (MLR) models. Four models met statistical acceptance in internal and external validation. The ANN model was superior to other models in predicting the pIC50 of the outcome. The descriptors put into the models were found to be comparable with the target-ligand complex X-ray structures, making these models interpretable. Three selected molecules possess drug-like properties (pIC50 values ranged from 9.19 to 9.54). The docking score between candidates and the BChE receptor (RCSB ID 6EYF) ranged from -8.4 to -9.0 kcal/mol. Remarkably, the pharmacokinetics, biological activities, molecular dynamics, and physicochemical properties of compound 18 (C20H22N4O, pIC50 value = 9.33, oxadiazole derivative group) support its protective effects on AD treatment due to its non-toxic nature, non-carcinogen, cholinergic nature, capability to penetrate the blood-brain barrier, and high gastrointestinal absorption.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
14
|
Szatmári P, Ducza E. Changes in Expression and Function of Placental and Intestinal P-gp and BCRP Transporters during Pregnancy. Int J Mol Sci 2023; 24:13089. [PMID: 37685897 PMCID: PMC10487423 DOI: 10.3390/ijms241713089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
ABC transporters are ubiquitous in the human body and are responsible for the efflux of drugs. They are present in the placenta, intestine, liver and kidney, which are the major organs that can affect the pharmacokinetic and pharmacologic properties of drugs. P-gp and BCRP transporters are the best-characterized transporters in the ABC superfamily, and they have a pivotal role in the barrier tissues due to their efflux mechanism. Moreover, during pregnancy, drug efflux is even more important because of the developing fetus. Recent studies have shown that placental and intestinal ABC transporters have great importance in drug absorption and distribution. Placental and intestinal P-gp and BCRP show gestational-age-dependent expression changes, which determine the drug concentration both in the mother and the fetus during pregnancy. They may have an impact on the efficacy of antibiotic, antiviral, antihistamine, antiemetic and oral antidiabetic therapies. In this review, we would like to provide an overview of the pharmacokinetically relevant expression alterations of placental and intestinal ABC transporters during pregnancy.
Collapse
Affiliation(s)
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary;
| |
Collapse
|
15
|
Badiee SA, Isu UH, Khodadadi E, Moradi M. The Alternating Access Mechanism in Mammalian Multidrug Resistance Transporters and Their Bacterial Homologs. MEMBRANES 2023; 13:568. [PMID: 37367772 PMCID: PMC10305233 DOI: 10.3390/membranes13060568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Multidrug resistance (MDR) proteins belonging to the ATP-Binding Cassette (ABC) transporter group play a crucial role in the export of cytotoxic drugs across cell membranes. These proteins are particularly fascinating due to their ability to confer drug resistance, which subsequently leads to the failure of therapeutic interventions and hinders successful treatments. One key mechanism by which multidrug resistance (MDR) proteins carry out their transport function is through alternating access. This mechanism involves intricate conformational changes that enable the binding and transport of substrates across cellular membranes. In this extensive review, we provide an overview of ABC transporters, including their classifications and structural similarities. We focus specifically on well-known mammalian multidrug resistance proteins such as MRP1 and Pgp (MDR1), as well as bacterial counterparts such as Sav1866 and lipid flippase MsbA. By exploring the structural and functional features of these MDR proteins, we shed light on the roles of their nucleotide-binding domains (NBDs) and transmembrane domains (TMDs) in the transport process. Notably, while the structures of NBDs in prokaryotic ABC proteins, such as Sav1866, MsbA, and mammalian Pgp, are identical, MRP1 exhibits distinct characteristics in its NBDs. Our review also emphasizes the importance of two ATP molecules for the formation of an interface between the two binding sites of NBD domains across all these transporters. ATP hydrolysis occurs following substrate transport and is vital for recycling the transporters in subsequent cycles of substrate transportation. Specifically, among the studied transporters, only NBD2 in MRP1 possesses the ability to hydrolyze ATP, while both NBDs of Pgp, Sav1866, and MsbA are capable of carrying out this reaction. Furthermore, we highlight recent advancements in the study of MDR proteins and the alternating access mechanism. We discuss the experimental and computational approaches utilized to investigate the structure and dynamics of MDR proteins, providing valuable insights into their conformational changes and substrate transport. This review not only contributes to an enhanced understanding of multidrug resistance proteins but also holds immense potential for guiding future research and facilitating the development of effective strategies to overcome multidrug resistance, thus improving therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (U.H.I.); (E.K.)
| |
Collapse
|
16
|
Chai AB, Callaghan R, Gelissen IC. Regulation of P-Glycoprotein in the Brain. Int J Mol Sci 2022; 23:ijms232314667. [PMID: 36498995 PMCID: PMC9740459 DOI: 10.3390/ijms232314667] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Maintenance of the tightly regulated homeostatic environment of the brain is facilitated by the blood-brain barrier (BBB). P-glycoprotein (P-gp), an ATP-binding cassette transporter, is expressed on the luminal surface of the endothelial cells in the BBB, and actively exports a wide variety of substrates to limit exposure of the vulnerable brain environment to waste buildup and neurotoxic compounds. Downregulation of P-gp expression and activity at the BBB have been reported with ageing and in neurodegenerative diseases. Upregulation of P-gp at the BBB contributes to poor therapeutic outcomes due to altered pharmacokinetics of CNS-acting drugs. The regulation of P-gp is highly complex, but unravelling the mechanisms involved may help the development of novel and nuanced strategies to modulate P-gp expression for therapeutic benefit. This review summarises the current understanding of P-gp regulation in the brain, encompassing the transcriptional, post-transcriptional and post-translational mechanisms that have been identified to affect P-gp expression and transport activity.
Collapse
Affiliation(s)
- Amanda B. Chai
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Richard Callaghan
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ingrid C. Gelissen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: ; Tel.: +61-2-8627-0357
| |
Collapse
|