1
|
Sun Z, Zheng Y, Wang T, Zhang J, Li J, Wu Z, Zhang F, Gao T, Yu L, Xu X, Qian H, Tan Y. Aloe Vera Gel and Rind-Derived Nanoparticles Mitigate Skin Photoaging via Activation of Nrf2/ARE Pathway. Int J Nanomedicine 2025; 20:4051-4067. [PMID: 40191040 PMCID: PMC11972608 DOI: 10.2147/ijn.s510352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
Background Skin aging is the primary external manifestation of human aging, and long-term exposure to ultraviolet radiation is the leading cause of photoaging, which can lead to actinic keratosis and skin cancer in severe cases. Traditional treatments may pose safety risks and cause side effects. As an emerging research direction, plant-derived exosome-like nanoparticles (PDNPs) show promise in combating aging. Aloe vera, known for its natural active ingredients that benefit the skin, aloe-derived exosome-like nanoparticles (ADNPs) have not yet been studied for their potential in delaying skin aging. Methods In this study, nanoparticles were isolated from two different sites, aloe vera gel and aloe vera rind (gADNPs and rADNPs), and characterized by TEM, SEM, AFM, NTA and BCA. The effects were evaluated by constructing in vitro and in vivo models and using RT-qPCR, immunofluorescence, and histopathological analysis. Results The results first revealed the exceptional anti-aging effects of ADNPs. We found that ADNPs promoted the nuclear translocation of Nrf2, alleviated oxidative stress and DNA damage induced by UV exposure, and inhibited the elevation of β-gal and SASP. In vivo, ADNPs reduced MDA and SOD levels in mouse skin tissue and delayed skin photoaging. Moreover, safety assessments confirmed the excellent biocompatibility of ADNPs. Conclusion ADNPs delay skin photoaging through the Nrf2/ARE pathway, holding potential clinical application value, and may provide new therapeutic strategies for future medical cosmetology and skin disease prevention.
Collapse
Affiliation(s)
- Zixuan Sun
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, People’s Republic of China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Yuzhou Zheng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Tangrong Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Jiaxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Jiali Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Zhijing Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Fan Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Tingxin Gao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Li Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - XueZhong Xu
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, People’s Republic of China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Yulin Tan
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213017, People’s Republic of China
| |
Collapse
|
2
|
Mendes C, Zaccaron RP, Casagrande LDR, Venturini LM, da Costa C, Lima IR, Wermuth TB, Arcaro S, Feuser PE, Lock Silveira PC. Green synthesis of gold nanoparticles in an animal model of chronic wound induced with Resiquimod. J Drug Target 2024; 32:1086-1100. [PMID: 38980282 DOI: 10.1080/1061186x.2024.2373304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/10/2024]
Abstract
Cost-effective strategies for the treatment of chronic wounds must be developed. The green synthesis of gold nanoparticles (GNPs) it is possible to guarantee a lower toxicity in biological tissues and greater safety of applicability, in addition to adding the effects of nanoparticles (NPs) to those of extracts. The objective of this study was to evaluate the effects of treatment with biosynthesized GNPs in a chronic wound model. Wistar rats were distributed into 7 groups: Acute Wound (AW); Chronic wound (CW); CW + GNPs-Açaí; CW + GNPs-DB; CW + AV-GNPs; CW + SafGel®; CW + 660 nm laser. The chronic injury model was induced with topically applied Resiquimod for 6 days. Treatments were then initated on the fourteenth day after the last application of Resiquimod and carried out daily for ten days. The proposed therapies with GNPs were able to significantly reduce the inflammatory score and increase the rate of wound contraction. In histology, there was a reduction in the inflammatory infiltrate and increased gene expression of fibronectin and type III collagen, mainly in the CW + AV-GNPs group. The therapies were able to reduce pro-inflammatory cytokines, increase anti-inflammatory cytokines, and reduce oxidative stress. The results demonstrated that the effects of GNPs appear to complement those of the extracts, thereby enhancing the tissue repair process.
Collapse
Affiliation(s)
- Carolini Mendes
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Ligia Milanez Venturini
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Camila da Costa
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Igor Ramos Lima
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Tiago Bender Wermuth
- Biomaterials and Nanostructured Materials Research Group, Postgraduate Program in Materials Science and Engineering, Universidade do Extremo Sul Catarinense, UNESC, Criciúma, Santa Catarina, Brazil
| | - Sabrina Arcaro
- Biomaterials and Nanostructured Materials Research Group, Postgraduate Program in Materials Science and Engineering, Universidade do Extremo Sul Catarinense, UNESC, Criciúma, Santa Catarina, Brazil
| | - Paulo Emilio Feuser
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
3
|
Ferreira LMDMC, da Cruz NF, Lynch DG, da Costa PF, Salgado CG, Silva-Júnior JOC, Rossi A, Ribeiro-Costa RM. Hydrogel Containing Propolis: Physical Characterization and Evaluation of Biological Activities for Potential Use in the Treatment of Skin Lesions. Pharmaceuticals (Basel) 2024; 17:1400. [PMID: 39459039 PMCID: PMC11510207 DOI: 10.3390/ph17101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Skin injury affects the integrity of the skin structure and induces the wound healing process, which is defined by a well-coordinated series of cellular and molecular reactions that aim to recover or replace the injured tissue. Hydrogels are a group of promising biomaterials that are able to incorporate active ingredients for use as dressings. This study aimed to synthesize hydrogels with and without propolis extract and evaluate their physical characteristics and biological activities in vitro for potential use as active dressings in the treatment of skin lesions. METHODS The antifungal [Candida albicans (C. albicans) and Candida tropicalis (C. tropicalis)] and antibacterial [Staphylococcus aureus (S. aureus), Pseudomonas aeruginosas (P. aeruginosas) and Escherichia coli (E. coli)] activity was assessed by the microdilution method in plates and antioxidant potential by the reduction of the phosphomolybdate complex. RESULTS The hydrogels showed good water absorption capacity, high solubility, and high gel fraction, as well as good porosity, water retention, and vapor transmission rates. They revealed a totally amorphous structure. The extract and the hydrogels containing the propolis extract (1.0% and 2.5%) did not inhibit fungal growth. However, they showed antibacterial activity against strains of S. aureus and P. aeruginosas. Regarding the E. coli strain, only the extract inhibited its growth. It showed good antioxidant activity by the evaluation method used. CONCLUSIONS Therefore, the hydrogels containing propolis extract can be a promising alternative with antibacterial and antioxidant action for use as dressings for the treatment of skin lesions.
Collapse
Affiliation(s)
| | - Naila Ferreira da Cruz
- Institute of Biological Sciences, Federal University of Pará, Belem 66075-110, Brazil; (N.F.d.C.); (P.F.d.C.); (C.G.S.)
| | - Desireé Gyles Lynch
- School of Pharmacy, College of Health Sciences, University of Technology, Jamaica, 237 Old Hope Road, Kinston 6, Jamaica;
| | - Patrícia Fagundes da Costa
- Institute of Biological Sciences, Federal University of Pará, Belem 66075-110, Brazil; (N.F.d.C.); (P.F.d.C.); (C.G.S.)
| | - Claudio Guedes Salgado
- Institute of Biological Sciences, Federal University of Pará, Belem 66075-110, Brazil; (N.F.d.C.); (P.F.d.C.); (C.G.S.)
| | - José Otávio Carréra Silva-Júnior
- Cosmetic R&D Laboratory, Department Pharmaceutical, Faculty of Pharmaceutical Sciences, Federal University of Pará, Belem 66075-110, Brazil;
| | - Alessandra Rossi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
| | | |
Collapse
|
4
|
Kurćubić VS, Đurović V, Stajić SB, Dmitrić M, Živković S, Kurćubić LV, Mašković PZ, Mašković J, Mitić M, Živković V, Jakovljević V. Multitarget Phytocomplex: Focus on Antibacterial Profiles of Grape Pomace and Sambucus ebulus L. Lyophilisates Against Extensively Drug-Resistant (XDR) Bacteria and In Vitro Antioxidative Power. Antibiotics (Basel) 2024; 13:980. [PMID: 39452246 PMCID: PMC11505505 DOI: 10.3390/antibiotics13100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives: This study was conceived with the aim of translating the experience and knowledge of the research group into the design and creation of multi-active phytocomplex cocktails from lyophilised winery by-products (Grape Pomace-GP) and weeds (Sambucus ebulus L., Dwarf Elder-DE). Methods: Quantification of bioactive molecules was performed by high-performance liquid chromatography (HPLC) method. Results: In the extract obtained from lyophilised GP, the most dominant component that was quantified was petunidin-3-glucoside. Prominent compounds that were quantified in DE extract were cyanidin derivatives. The total number of microorganisms in lyophilisates is low, but some of them still survive lyophilisation. Antibacterial activity was determined by microdilution, the minimum inhibitory concentration (MIC) of the tested bacteria ranged from 0.78 mg/mL to 25.00 mg/mL. Antibacterial susceptibility testing (AST) revealed that Klebsiella spp. and Acinetobacter baumannii complex are extensively drug-resistant (XDR). Conclusions: The GP + DE cocktail showed very strong AB power against both tested XDR bacteria. The total phenolic content and antioxidative effect (determined spectrophotometrically) indicate their linear correlation.
Collapse
Affiliation(s)
- Vladimir S. Kurćubić
- Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32102 Čačak, Serbia
| | - Vesna Đurović
- Department of Biology, Microbiological Biotechnology and Plant Protection, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32102 Čačak, Serbia;
| | - Slaviša B. Stajić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Marko Dmitrić
- Veterinary Specialized Institute “Kraljevo”, Žička 34, 36000 Kraljevo, Serbia; (M.D.); (S.Ž.)
| | - Saša Živković
- Veterinary Specialized Institute “Kraljevo”, Žička 34, 36000 Kraljevo, Serbia; (M.D.); (S.Ž.)
| | - Luka V. Kurćubić
- Department of Medical Microbiology, University Clinical Center of Serbia, Pasterova 2, 11000 Beograd, Serbia;
| | - Pavle Z. Mašković
- Department of Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32102 Čačak, Serbia; (P.Z.M.); (J.M.)
| | - Jelena Mašković
- Department of Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32102 Čačak, Serbia; (P.Z.M.); (J.M.)
| | - Milan Mitić
- Faculty of Science and Mathematics in Niš, University of Niš, Višegradska 33, 18000 Niš, Serbia;
| | - Vladimir Živković
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (V.Ž.); (V.J.)
- Department of Human Pathology, Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991 Moscow, Russia
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (V.Ž.); (V.J.)
- Department of Human Pathology, Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991 Moscow, Russia
| |
Collapse
|
5
|
Ullah I, Farooq AS, Naz I, Ahmad W, Ullah H, Sehar S, Nawaz A. Fabrication of Polymeric Hydrogels Containing Esomeprazole for Oral Delivery: In Vitro and In Vivo Pharmacokinetic Characterization. Polymers (Basel) 2023; 15:polym15071798. [PMID: 37050412 PMCID: PMC10097100 DOI: 10.3390/polym15071798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Hydrogel is one of the most interesting and excellent candidates for oral drug delivery. The current study focuses on formulation development of hydrogels for controlled oral delivery of esomeprazole. The hydrogels were prepared by solution casting method by dissolving polymers in Polyvinyl alcohol (PVA) solution. Calcium alginate, Hydroxyl propyl methylcellulose (HPMC), acrylic acid and chondroitin sulfate were used in the preparation of hydrogels. Fourier transform infrared (FTIR) analysis showed no incompatibilities between drug and excipients used in the preparation of formulations. The hydrogels were characterized for size and surface morphology. Drug encapsulation efficiency was measured by Ultraviolet-visible (UV-VIS) spectroscopy. In vitro release studies were carried out using dissolution apparatus. The formulated hydrogels were then compared with the marketed product in vivo using rabbits. The result indicates that prepared hydrogels have a uniform size with a porous surface. The esomeprazole encapsulation efficiency of the prepared hydrogels was found to be 83.1 ± 2.16%. The esomeprazole-loaded hydrogel formulations showed optimum and Pharmacopeial acceptable range swelling behavior. The release of esomeprazole is controlled for 24 h (85.43 ± 0.32% in 24 h). The swelling and release of drug results make the prepared hydrogels a potential candidate for the controlled delivery of esomeprazole. The release of the drug from prepared hydrogel followed the super case transport-2 mechanism. The in vivo studies showed that prepared hydrogel formulations showed controlled and prolonged release of esomeprazole as compared to drug solution and marketed product. The formulations were kept for stability studies; there was no significant change observed in physical parameters, i.e., (appearance, color change and grittiness) at 40 °C ± 2/75% ± RH. There was a negligible difference in the drug content observed after the stability study suggested that all the formulations are stable under the given conditions for 60 days. The current study provides a valuable perspective on the controlled release profile of Hydroxyl propyl methylcellulose (HPMC) and calcium alginate-based esomeprazole hydrogels.
Collapse
Affiliation(s)
- Irshad Ullah
- Department of Pharmacy, University of Swabi, Swabi 94640, Khyber Pakhtunkhwa, Pakistan
| | - Ayesha Shuja Farooq
- Department of Biochemistry, Science Unit, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia
| | - Iffat Naz
- Department of Biology, Science Unit, Deanship of Educational Services, Qassim University, Buraydah 51452, Saudi Arabia
| | - Waqar Ahmad
- Department of Pharmacy, University of Swabi, Swabi 94640, Khyber Pakhtunkhwa, Pakistan
| | - Hidayat Ullah
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29220, Khyber Pakhtunkhwa, Pakistan
| | - Shama Sehar
- Department of Environmental Engineering, College of Engineering, University of Technology, Salmabad 18041, Bahrain
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
6
|
Chelu M, Popa M, Ozon EA, Pandele Cusu J, Anastasescu M, Surdu VA, Calderon Moreno J, Musuc AM. High-Content Aloe vera Based Hydrogels: Physicochemical and Pharmaceutical Properties. Polymers (Basel) 2023; 15:polym15051312. [PMID: 36904552 PMCID: PMC10007233 DOI: 10.3390/polym15051312] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The present research focuses on the physicochemical and pharmacotechnical properties of new hydrogels obtained using allantoin, xanthan gum, salicylic acid and different concentrations of Aloe vera (5, 10, 20% w/v in solution; 38, 56, 71 wt% in dry gels). The thermal behavior of Aloe vera composite hydrogels was studied using DSC and TG/DTG analyses. The chemical structure was investigated using different characterization methods (XRD, FTIR and Raman spectroscopies) and the morphology of the hydrogels was studied SEM and AFM microscopy. Pharmacotechnical evaluation on tensile strength and elongation, moisture content, swelling and spreadability was also completed. Physical evaluation confirmed that the appearance of the prepared Aloe vera based hydrogels was homogeneous and the color varied from pale beige to deep opaque beige with increasing Aloe vera concentration. All other evaluation parameters, e.g., pH, viscosity, spreadability and consistency were found to be adequate in all hydrogel formulations. SEM and AFM images show that the structure of the hydrogels condensed into homogeneous polymeric solids with the addition of Aloe vera, in accordance with the decrease in peak intensities observed via XRD analysis. These results suggest interactions between the hydrogel matrix and Aloe vera as observed via FTIR and TG/DTG and DSC analyses. Considering that Aloe vera content higher than 10% (w/v) did not stimulate further interactions, this formulation (FA-10) can be used for further biomedical applications.
Collapse
Affiliation(s)
- Mariana Chelu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Monica Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Jeanina Pandele Cusu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Vasile Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Jose Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| |
Collapse
|
7
|
Ferreira LMDMC, Bandeira EDS, Gomes MF, Lynch DG, Bastos GNT, Silva-Júnior JOC, Ribeiro-Costa RM. Polyacrylamide Hydrogel Containing Calendula Extract as a Wound Healing Bandage: In Vivo Test. Int J Mol Sci 2023; 24:3806. [PMID: 36835221 PMCID: PMC9968031 DOI: 10.3390/ijms24043806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 02/17/2023] Open
Abstract
Hydrogel is a biomaterial widely used in several areas of industry due to its great biocompatibility and adaptability to biological tissues. In Brazil, the Calendula plant is approved by the Ministry of Health as a medicinal herb. It was chosen to be incorporated in the hydrogel formulation because of its anti-inflammatory, antiseptic and healing effects. This study synthesized polyacrylamide hydrogel containing calendula extract and evaluated its efficiency as a bandage for wound healing. The hydrogels were prepared using free radical polymerization and characterized by Scanning Electron Microscopy, swelling analysis and mechanical properties by texturometer. The morphology of the matrices showed large pores and foliaceous structure. In vivo testing, as well as the evaluation of acute dermal toxicity, was conducted using male Wistar rats. The tests indicated efficient collagen fiber production, improved skin repair and no signs of dermal toxicity. Thus, the hydrogel presents compatible properties for the controlled release of calendula extract used as a bandage to promote cicatrization.
Collapse
Affiliation(s)
| | - Elanne de Sousa Bandeira
- Laboratory of Nanotechnology Pharmaceutical, Institute of Health Sciences, Federal University of Pará, Rua Augusto Corrêa 01, Belém 66075-110, PA, Brazil
| | - Maurício Ferreira Gomes
- Laboratory of Neuroinflammation, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa 01, Belém 66075-110, PA, Brazil
| | - Desireé Gyles Lynch
- School of Pharmacy, College of Health Sciences, University of Technology, 237 Old Hope Road, Kinston 6, Jamaica
| | - Gilmara Nazareth Tavares Bastos
- Laboratory of Neuroinflammation, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa 01, Belém 66075-110, PA, Brazil
| | - José Otávio Carréra Silva-Júnior
- Laboratory R&D Pharmaceutical and Cosmetic, Institute of Health Sciences, Federal University of Pará, Rua Augusto Corrêa 01, Belém 66075-110, PA, Brazil
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Nanotechnology Pharmaceutical, Institute of Health Sciences, Federal University of Pará, Rua Augusto Corrêa 01, Belém 66075-110, PA, Brazil
| |
Collapse
|
8
|
Isolation of Aloe saponaria-Derived Extracellular Vesicles and Investigation of Their Potential for Chronic Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14091905. [PMID: 36145653 PMCID: PMC9504946 DOI: 10.3390/pharmaceutics14091905] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
A chronic wound is caused by a failure to progress through the normal phases of wound repair in an orderly and timely manner. To induce skin regeneration while inhibiting chronic inflammation, numerous natural products, and in particular, plant-derived biomaterials, have been developed. Aloe saponaria, is known to contain flavonoid and phenolic acid compounds with anti-oxidative and anti-inflammatory properties. Here, we isolated extracellular vesicles (EVs) from Aloe saponaria by polyethylene glycol (PEG)-based precipitation and investigated their potential as a therapeutic for chronic wound healing. The Aloe saponaria-derived EVs (AS-EVs) showed no significant cytotoxicity on several cell types, despite a high level of intracellular uptake. When lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were treated with AS-EVs, significant reductions in the expression of pro-inflammatory genes, such as interleukin-6 and interleukin-1β, were observed. Proliferation and migration of human dermal fibroblasts, as determined by the water-soluble tetrazolium salt-8 and transwell migration assay, respectively, were shown to be promoted by treatment with AS-EVs. It was also demonstrated that AS-EVs enhanced tube formation in human umbilical vein endothelial cells, indicating a stimulatory activity on angiogenesis; one of the crucial steps for effective wound healing. Collectively, our results suggest the potential of AS-EVs as a natural therapeutic for chronic wound healing.
Collapse
|