1
|
Paudwal G, Dolkar R, Perveen S, Sharma R, Singh PP, Gupta PN. Third Generation Solid Dispersion-Based Formulation of Novel Anti-Tubercular Agent Exhibited Improvement in Solubility, Dissolution and Biological Activity. AAPS J 2024; 26:52. [PMID: 38649550 DOI: 10.1208/s12248-024-00922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
The long treatment period and development of drug resistance in tuberculosis (TB) necessitates the discovery of new anti-tubercular agents. The drug discovery program of the institute leads to the development of an anti-tubercular lead (IIIM-019), which is an analogue of nitrodihydroimidazooxazole and exhibited promising anti-tubercular action. However, IIIM-019 displays poor aqueous solubility (1.2 µg/mL), which demands suitable dosage form for its efficient oral administration. In the present study, third generation solid dispersion-based formulation was developed to increase the solubility and dissolution of IIIM-019. The solubility profile of IIIM-019 using various polymeric carriers was determined and subsequently, PVP K-30 and P-407 were selected for preparation of binary and ternary solid dispersion. The third-generation ternary solid dispersion comprising PVP K-30 and P-407 revealed a remarkable enhancement in the aqueous solubility of IIIM-019. Physicochemical characterization of the developed formulations was done by employing FTIR spectroscopy, scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and dynamic light scattering analysis. The dissolution study indicated an impressive release profile with the optimized formulation. The optimized formulation was further examined for cytotoxicity, cellular uptake, and hemolytic activity. The results indicated that the formulation had no apparent cytotoxicity on Caco-2 cells and was non-hemolytic in nature. Moreover, the optimized formulation showed significantly improved anti-tubercular activity compared to the native molecule. These findings showed that the developed third generation ternary solid dispersion could be a promising option for the oral delivery of investigated anti-tubercular molecule.
Collapse
Affiliation(s)
- Gourav Paudwal
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rigzin Dolkar
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Parvinder Pal Singh
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prem N Gupta
- PK-PD Tox & Formulation Section, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Alkathiri FA, Bukhari SI, Imam SS, Alshehri S, Mahdi WA. Formulation of silymarin binary and ternary solid dispersions: Characterization, simulation study and cell viability assessment against lung cancer cell line. Heliyon 2024; 10:e23221. [PMID: 38163135 PMCID: PMC10756988 DOI: 10.1016/j.heliyon.2023.e23221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Silymarin (SL) is a water-insoluble flavonoid used in the treatment of different diseases, but its therapeutic activity is limited due to its low solubility. So, in the present study, SL solid dispersions (SDs) were developed using different carriers like Kollidone VA64 (KL), Soluplus (SP), and Poloxamer 188 (PL) by solvent evaporation (SE), microwave irradiation (MI), and freeze-drying (FD) methods. The phase solubility and saturation solubility studies were assessed to estimate the stability constant as well as the carrier effect. The dissolution studies were performed for prepared SL-SDs (binary and ternary) to select the optimum SL-SDs. The selected SL-SDs (F5, F9) were further characterized for infrared spectroscopy (IR), nuclear magnetic resonance (NMR), differential scanning calorimeter (DSC), scanning electron microscope (SEM), and X-ray diffraction (XRD). Finally, the comparative cell viability assay (lung cancer cell line) was performed to evaluate the change in activity after the formulation of SDs. The phase solubility and solubility study results displayed marked enhancements in solubility. The dissolution study findings showed significant enhancement in drug release from ternary solid dispersions (F7-F9) > ternary physical mixture (PM3) > binary solid dispersions (F1-F6) > binary physical mixture (PM1, PM2) in comparison to free SL. A greater release was observed from ternary SDs due to the addition of PL in the formulation, which had a synergistic effect on increasing the solubility. IR and NMR spectra revealed no chemical interaction between SL, KL, and PL. DSC, XRD, and SEM all confirmed the transformation of crystalline SL into amorphous SL. The cell viability assay demonstrated significantly enhanced results from ternary solid dispersion (F9) compared to free SL. Based on the study results, it can be said that SL-SDs are an alternative way to deliver drugs orally that can improve solubility and have anti-cancer activity.
Collapse
Affiliation(s)
- Fai A. Alkathiri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Baral KC, Lee SH, Song JG, Jeong SH, Han HK. Improved Therapeutic Efficacy of MT102, a New Anti-Inflammatory Agent, via a Self-Microemulsifying Drug Delivery System, in Ulcerative Colitis Mice. Pharmaceutics 2023; 15:2720. [PMID: 38140061 PMCID: PMC10747691 DOI: 10.3390/pharmaceutics15122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
MT-102 is a new anti-inflammatory agent derived from Juglans mandshurica and Isatis indigotica. Its therapeutic potential is hindered by low aqueous solubility, impacting its in vivo efficacy. Therefore, this study aimed to develop a self-microemulsifying drug delivery system (SMEDDS) for MT-102 to enhance its oral efficacy in treating ulcerative colitis. Solubility assessment in different oils, surfactants, and cosurfactants led to a SMEDDS formulation of MT-102 using Capmul MCM, Tween 80, and propylene glycol. Based on a pseudoternary phase diagram, the optimal SMEDDS composition was selected, which consisted of 15% Capmul MCM, 42.5% Tween 80, and 42.5% propylene glycol. The resulting optimized SMEDDS (SMEDDS-F1) exhibited a narrow size distribution (177.5 ± 2.80 nm) and high indirubin content (275 ± 5.58 µg/g, a biomarker). Across an acidic to neutral pH range, SMEDDS-F1 showed rapid and extensive indirubin release, with dissolution rates approximately 15-fold higher than pure MT-102. Furthermore, oral administration of SMEDDS-F1 effectively mitigated inflammatory progression and symptoms in a mouse model of ulcerative colitis, whereas pure MT-102 was ineffective. SMEDDS-F1 minimized body weight loss (less than 5%) without any significant change in colon length and the morphology of colonic tissues, compared to those of the healthy control group. In addition, oral administration of SMEDDS-F1 significantly inhibited the secretion of pro-inflammatory cytokines such as IL-6 and TNF-α. In conclusion, the SMEDDS-F1 formulation employing Capmul MCM, Tween 80, and propylene glycol (15:42.5:42.5, w/w) enhances the solubility and therapeutic efficacy of MT-102.
Collapse
Affiliation(s)
| | | | | | | | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
4
|
Muruganantham S, Krishnaswami V, Kandasamy R, Alagarsamy S. Potentiating the solubility of BCS class II drug zaltoprofen using nanodispersion technology. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2173224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Selvakumar Muruganantham
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | | | - Ruckmani Kandasamy
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Shanmugarathinam Alagarsamy
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
5
|
Yang Z, Wang S, Hong Y, Gai R, Hong W, Tang B, Lin C, Wang X, Wang Q, Chen C, Wang J, Weng Q. Safety Evaluation of Curcumol by a Repeated Dose 28-Day Oral Exposure Toxicity Study in Rats. TOXICS 2023; 11:114. [PMID: 36850989 PMCID: PMC9965727 DOI: 10.3390/toxics11020114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Curcumol, a natural product isolated from the traditional Chinese medicine Rhizoma curcumae, possesses various potential therapeutic values in many diseases. However, evidence of its toxicological profile is currently lacking. In this study, a repeated toxicity study of curcumol was conducted for the first time. SD rats were exposed to doses of 250, 500, 1000 mg/kg in a selected dose formulation for 28 days through oral administration. The potential toxic effects of curcumol on the blood system were observed and further validated in vivo and in vitro. Moreover, other hematology and biochemistry parameters as well as the weight of organs were altered, but no related histopathological signs were observed, indicating these changes were not regarded as toxicologically relevant. Our current findings provide a complete understanding of the safety profile of curcumol, which may contribute to its further study of investigational new drug application.
Collapse
Affiliation(s)
- Zhaoxu Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yawen Hong
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Renhua Gai
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxiang Hong
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bingbing Tang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunqin Lin
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaomeng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojing Wang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Chen
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|