1
|
Baran E, Birczyński A, Milanowski B, Klaja J, Nowak P, Dorożyński P, Kulinowski P. 3D Printed Drug Delivery Systems in Action-Magnetic Resonance Imaging and Relaxometry for Monitoring Mass Transport Phenomena. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39056539 DOI: 10.1021/acsami.4c08501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The hypothesis of the study was that (1) 3D printed drug delivery systems (DDS) could be characterized in situ during drug release using NMR/MRI techniques in terms of mass transport phenomena description (interfacial phenomena), particularly for systems dealing with two mobile phases (e.g., water and low molecular weight liquid polymer); (2) consequently, it could be possible to deduce how these interfacial mass transport phenomena influence functional properties of 3D printed DDS. Matrix drug delivery systems, prepared using masked stereolithography (MSLA), containing poly(ethylene glycol) diacrylate (PEGDA) and low molecular weight polyethylene glycol (PEG) with ropinirole hydrochloride (RH) were studied as example formulations. The PEGDA to PEG (mobile phase) concentration ratio influenced drug release. It was reflected in spatiotemporal changes in parametric T2 relaxation time (T2) and amplitude (A) images obtained using magnetic resonance imaging (MRI) and T1-T2 relaxation time correlations obtained using low-field time-domain nuclear magnetic resonance (LF TD NMR) relaxometry during incubation in water. For most of the tested formulations, two signal components related to PEG and water were assessed in the hydrated matrices by MRI relaxometry (parametric T2/A images). The PEG component faded out due to outward PEG diffusion and was gradually replaced by the water component. Both components spatially and temporally changed their parameters, reflecting evolving water-polymer interactions. The study shows that dynamic phenomena related to bidirectional mass transport can be quantified in situ using NMR and MRI techniques to gain insight into drug release mechanisms from 3D printed DDS systems.
Collapse
Affiliation(s)
- Ewelina Baran
- Institute of Technology, University of the National Education Commission, Krakow, ul. Podchora̧żych 2, Kraków 30-084, Poland
| | - Artur Birczyński
- Institute of Technology, University of the National Education Commission, Krakow, ul. Podchora̧żych 2, Kraków 30-084, Poland
| | - Bartłomiej Milanowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Rokietnicka 3, Poznań 60-806, Poland
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, Zba̧szyń 64-360, Poland
| | - Jolanta Klaja
- Oil and Gas Institute - National Research Institute, ul. Lubicz 25 A, Kraków 31-503, Poland
| | - Piotr Nowak
- Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, al. Mickiewicza 30, Kraków 30-059 , Poland
| | - Przemysław Dorożyński
- Chair of Inorganic Chemistry and Pharmaceutical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, Kraków 30-688, Poland
| | - Piotr Kulinowski
- Institute of Technology, University of the National Education Commission, Krakow, ul. Podchora̧żych 2, Kraków 30-084, Poland
| |
Collapse
|
2
|
Shuklinova O, Wyszogrodzka-Gaweł G, Baran E, Lisowski B, Wiśniowska B, Dorożyński P, Kulinowski P, Polak S. Can 3D Printed Tablets Be Bioequivalent and How to Test It: A PBPK Model Based Virtual Bioequivalence Study for Ropinirole Modified Release Tablets. Pharmaceutics 2024; 16:259. [PMID: 38399313 PMCID: PMC10893163 DOI: 10.3390/pharmaceutics16020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
As the field of personalized dosing develops, the pharmaceutical manufacturing industry needs to offer flexibility in terms of tailoring the drug release and strength to the individual patient's needs. One of the promising tools which have such capacity is 3D printing technology. However, manufacturing small batches of drugs for each patient might lead to huge test burden, including the need to conduct bioequivalence trials of formulations to support the change of equipment or strength. In this paper we demonstrate how to use 3D printing in conjunction with virtual bioequivalence trials based on physiologically based pharmacokinetic (PBPK) modeling. For this purpose, we developed 3D printed ropinirole formulations and tested their bioequivalence with the reference product Polpix. The Simcyp simulator and previously developed ropinirole PBPK model were used for the clinical trial simulations. The Weibull-fitted dissolution profiles of test and reference formulations were used as inputs for the model. The virtual bioequivalence trials were run using parallel design. The study power of 80% was reached using 125 individuals. The study demonstrated how to use PBPK modeling in conjunction with 3D printing to test the virtual bioequivalence of newly developed formulations. This virtual experiment demonstrated the bioequivalence of one of the newly developed formulations with a reference product available on a market.
Collapse
Affiliation(s)
- Olha Shuklinova
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza St., 31-530 Kraków, Poland
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK;
| | - Gabriela Wyszogrodzka-Gaweł
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Ewelina Baran
- Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (P.K.)
| | - Bartosz Lisowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Barbara Wiśniowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Przemysław Dorożyński
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| | - Piotr Kulinowski
- Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland; (E.B.); (P.K.)
| | - Sebastian Polak
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK;
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (G.W.-G.); (B.L.); (B.W.); (P.D.)
| |
Collapse
|
3
|
Pastorin G, Benetti C, Wacker MG. From in vitro to in vivo: A comprehensive guide to IVIVC development for long-acting therapeutics. Adv Drug Deliv Rev 2023; 199:114906. [PMID: 37286087 DOI: 10.1016/j.addr.2023.114906] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Affiliation(s)
- Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | - Camillo Benetti
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
4
|
Spanakis M. In Silico Pharmacology for Evidence-Based and Precision Medicine. Pharmaceutics 2023; 15:pharmaceutics15031014. [PMID: 36986874 PMCID: PMC10054111 DOI: 10.3390/pharmaceutics15031014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Personalized/precision medicine (PM) originates from the application of molecular pharmacology in clinical practice, representing a new era in healthcare that aims to identify and predict optimum treatment outcomes for a patient or a cohort with similar genotype/phenotype characteristics [...].
Collapse
Affiliation(s)
- Marios Spanakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, GR-71003 Heraklion, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research & Technology-Hellas, GR-71110 Heraklion, Greece
| |
Collapse
|
5
|
Stamatopoulos K, O’Farrell C, Simmons MJH, Batchelor HK, Mistry N. Use of In Vitro Dynamic Colon Model (DCM) to Inform a Physiologically Based Biopharmaceutic Model (PBBM) to Predict the In Vivo Performance of a Modified-Release Formulation of Theophylline. Pharmaceutics 2023; 15:882. [PMID: 36986743 PMCID: PMC10058579 DOI: 10.3390/pharmaceutics15030882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
A physiologically based biopharmaceutic model (PBBM) of a modified-release formulation of theophylline (Uniphyllin Continus® 200 mg tablet) was developed and implemented to predict the pharmacokinetic (PK) data of healthy male volunteers by integrating dissolution profiles measured in a biorelevant in vitro model: the Dynamic Colon Model (DCM). The superiority of the DCM over the United States Pharmacopeia (USP) Apparatus II (USP II) was demonstrated by the superior predictions for the 200 mg tablet (average absolute fold error (AAFE): 1.1-1.3 (DCM) vs. 1.3-1.5 (USP II). The best predictions were obtained using the three motility patterns (antegrade and retrograde propagating waves, baseline) in the DCM, which produced similar PK profiles. However, extensive erosion of the tablet occurred at all agitation speeds used in USP II (25, 50 and 100 rpm), resulting in an increased drug release rate in vitro and overpredicted PK data. The PK data of the Uniphyllin Continus® 400 mg tablet could not be predicted with the same accuracy using dissolution profiles from the DCM, which might be explained by differences in upper gastrointestinal (GI) tract residence times between the 200 and 400 mg tablets. Thus, it is recommended that the DCM be used for dosage forms in which the main release phenomena take place in the distal GI tract. However, the DCM again showed a better performance based on the overall AAFE compared to the USP II. Regional dissolution profiles within the DCM cannot currently be integrated into Simcyp®, which might limit the predictivity of the DCM. Thus, further compartmentalization of the colon within PBBM platforms is required to account for observed intra-regional differences in drug distribution.
Collapse
Affiliation(s)
| | - Connor O’Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark J. H. Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah K. Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Nena Mistry
- Biopharmaceutics, DPD, MDS, GSK, David Jack Centre, Park Road, Ware SG12 0DP, UK
| |
Collapse
|