1
|
Cheema KS, Bit Mansour A, Raychaudhuri SP. What's new on the horizon for rheumatoid arthritis management. Best Pract Res Clin Rheumatol 2025; 39:102038. [PMID: 39939220 DOI: 10.1016/j.berh.2025.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic multisystem common autoimmune disease. Joints and the whole musculoskeletal system bear the brunt of the disease. Proper adequate treatment at the early stage is the foremost necessity to protect the patients from long term disabilities and reduce patient systemic morbidities including atherosclerosis and coronary artery disease. New biologic and non-biologic antirheumatic drugs in the last two decades have brought new dimensions for treat to target strategy and array of novel therapies for RA are in the horizon. Here in this systematic review our objective is to provide an overview of current developments and potentially available therapeutic options for RA. Novel immune-based therapies has the potential to change the treatment for RA. We have discussed in detail about the new drugs for RA in the horizon and provided analyses of the future drugs in pipeline for the management of RA.
Collapse
Affiliation(s)
- Karmtej S Cheema
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA.
| | - Andrew Bit Mansour
- Fate Therapeutics, Inc., 12278 Scripps Summit Drive, San Diego, CA, USA.
| | - Siba P Raychaudhuri
- Department of Dermatology and Medicine/Division of Rheumatology, Allergy & Clinical Immunology, University of California School of Medicine, Davis, CA, USA.
| |
Collapse
|
2
|
Zhang Y, Sun Y, Liao H, Shi S. Multifunctional DNA nanomaterials: a new frontier in rheumatoid arthritis diagnosis and treatment. NANOSCALE 2025; 17:4974-4999. [PMID: 39745199 DOI: 10.1039/d4nr04013a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Rheumatoid arthritis (RA) remains a challenging autoimmune disease due to its complex and heterogeneous pathophysiology, which complicates therapeutic and diagnostic efforts. Advances in DNA nanotechnology have introduced DNA nanomaterials as promising tools to overcome these barriers. This review focuses on three primary categories of DNA nanomaterials applied in RA: DNA nanostructures, DNA aptamers, and DNA-modified nanoparticles. DNA nanostructures, such as tetrahedral framework nucleic acids (tFNAs) and DNA origami, demonstrate anti-inflammatory properties and facilitate precise, controlled drug delivery. DNA aptamers, functioning as molecular recognition ligands, surpass traditional antibodies with their high specificity, low immunogenicity, and thermal stability, offering significant potential in biomarker detection and therapeutic interventions. While DNA-modified nanoparticles, which integrate DNA with materials like gold or lipids, have shown significant progress in bioimaging and drug delivery in other fields, their application in RA remains limited and warrants further exploration. Furthermore, advancements in stimulus-responsive systems are being explored to enable controlled drug release, which could significantly improve the specificity and efficiency of DNA nanomaterials in therapeutic applications. Despite their immense potential, challenges such as stability under physiological conditions, safety concerns, and clinical regulatory complexities persist. Overcoming these limitations is essential. This review highlights how DNA nanomaterials, beyond serving as delivery platforms, are poised to redefine RA treatment and diagnosis, opening the door to more personalized and effective approaches.
Collapse
Affiliation(s)
- Yiyi Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yue Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Hang Liao
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610015, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Wang X, Yue J, Guo S, Rahmatulla A, Li S, Liu Y, Chen Y. Dissolving microneedles: A transdermal drug delivery system for the treatment of rheumatoid arthritis. Int J Pharm 2025; 671:125206. [PMID: 39799999 DOI: 10.1016/j.ijpharm.2025.125206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder that impacts around 1% of the global population. Up to 20% of people become disabled within a year, which has a severely negative impact on their health and quality of life. RA has a complicated pathogenic mechanism, which initially affects small joints and progresses to larger ones over time. It can damage the skin, eyes, heart, kidney, and lung. Oral medications, intra-articular injections, and other treatments are being used; nevertheless, they have drawbacks, including low bioavailability, numerous adverse effects, and poor patient compliance. Dissolving microneedles (DMNs) are a safe and painless method for transdermal drug delivery, achieved through their ability to physically penetrate the epidermal barrier. They enable targeted drug delivery, significantly enhancing the bioavailability of medications and improving patient compliance. DMNs are particularly effective in delivering both lipophilic and high molecular weight biomolecules. The superior bioavailability of DMNs is demonstrated by the fact that low-dose DMN administration can achieve up to 25.8 times higher bioavailability compared to oral administration. This paper provides a comprehensive review of recent advancements in the use of DMNs for RA treatment, encompassing various materials (such as hyaluronic acid, chitosan, etc.), fabrication techniques (such as the two-step casting method, photopolymerization), and performance evaluations (including morphology, mechanical properties, skin penetration capability, solubility, and pharmacodynamics). Additionally, a thorough safety assessment has been conducted, revealing that DMNs cause minimal skin irritation and exhibit low cytotoxicity, ensuring their safety for clinical application. DMNs provide a highly effective and promising alternative to oral and injectable drug delivery systems, offering a novel therapeutic approach for RA patients that significantly improves treatment outcomes and enhances their quality of life.
Collapse
Affiliation(s)
- Xueni Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Jiang Yue
- Department of Endocrinology and Metabolism Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Shijie Guo
- Shengzhou Silk Protein Biotechnology Application Research Institute Zhejiang China
| | - Aysha Rahmatulla
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Shuangshuang Li
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Yang Liu
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China.
| |
Collapse
|
4
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
5
|
Wendong Y, Xingxing Y, Xianze X, Qiaomei F, Yujun S, Shanshan Z, Zheng S, Hairu X. Nanoformulation-assisted microneedle transdermal drug delivery system: An innovative platform enhancing rheumatoid arthritis treatment. Biomed Pharmacother 2024; 178:117219. [PMID: 39084080 DOI: 10.1016/j.biopha.2024.117219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
A transdermal delivery system offers high bioavailability and favorable patient adherence, constituting an optimal approach for localized administration in rheumatoid arthritis (RA) treatment. However, the stratum corneum (SC) impedes the delivery efficiency of conventional transdermal drug delivery systems. Microneedles (MNs) can temporarily create micropores within the SC, enabling drug distribution via bypassing this barrier and enhancing transdermal delivery effectiveness. Notably, MNs provide a painless method of drug delivery through the skin and may directly modulate inflammation in immune cells by delivering drugs via the lymphatic system during transdermal administration. However, the MN delivery system is not suitable for drugs with low water solubility and stability. Additionally, major concerns exist regarding the safety of using MN delivery for highly cytotoxic drugs, given that it could result in high local drug concentration at the delivery site. While MNs exhibit some degree of targeted delivery to the immune and inflammatory environment, their targeting efficiency remains suboptimal. Nanoformulations have the potential to significantly address the limitations of MNs in RA treatment by improving drug targeting, solubility, stability, and biocompatibility. Therefore, this review provides a concise overview of the advantages, disadvantages, and mechanisms of different types of MNs for RA treatment. It specifically focuses on the application and advantages of combining nanoformulation with MNs for RA treatment and summarizes the current trends in the development of nanoformulations combined with MNs in the field of RA treatment, offering theoretical support for future advancements and clinical applications.
Collapse
Affiliation(s)
- Yao Wendong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, China
| | - Yan Xingxing
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, China
| | - Xie Xianze
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, China
| | - Fan Qiaomei
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, China
| | - Shan Yujun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhou Shanshan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shi Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xu Hairu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310018, China.
| |
Collapse
|
6
|
Ren S, Xu Y, Dong X, Mu Q, Chen X, Yu Y, Su G. Nanotechnology-empowered combination therapy for rheumatoid arthritis: principles, strategies, and challenges. J Nanobiotechnology 2024; 22:431. [PMID: 39034407 PMCID: PMC11265020 DOI: 10.1186/s12951-024-02670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with multifactorial etiology and intricate pathogenesis. In RA, repeated monotherapy is frequently associated with inadequate efficacy, drug resistance, and severe side effects. Therefore, a shift has occurred in clinical practice toward combination therapy. However, conventional combination therapy encounters several hindrances, including low selectivity to arthritic joints, short half-lives, and varying pharmacokinetics among coupled drugs. Emerging nanotechnology offers an incomparable opportunity for developing advanced combination therapy against RA. First, it allows for co-delivering multiple drugs with augmented physicochemical properties, targeted delivery capabilities, and controlled release profiles. Second, it enables therapeutic nanomaterials development, thereby expanding combination regimens to include multifunctional nanomedicines. Lastly, it facilitates the construction of all-in-one nanoplatforms assembled with multiple modalities, such as phototherapy, sonodynamic therapy, and imaging. Thus, nanotechnology offers a promising solution to the current bottleneck in both RA treatment and diagnosis. This review summarizes the rationale, advantages, and recent advances in nano-empowered combination therapy for RA. It also discusses safety considerations, drug-drug interactions, and the potential for clinical translation. Additionally, it provides design tips and an outlook on future developments in nano-empowered combination therapy. The objective of this review is to achieve a comprehensive understanding of the mechanisms underlying combination therapy for RA and unlock the maximum potential of nanotechnology, thereby facilitating the smooth transition of research findings from the laboratory to clinical practice.
Collapse
Affiliation(s)
- Shujing Ren
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Xingpeng Dong
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Xia Chen
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China.
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| |
Collapse
|
7
|
Priya S, Daryani J, Desai VM, Singhvi G. Bridging the gap in rheumatoid arthritis treatment with hyaluronic acid-based drug delivery approaches. Int J Biol Macromol 2024; 271:132586. [PMID: 38795889 DOI: 10.1016/j.ijbiomac.2024.132586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Rheumatoid Arthritis (RA) is a chronic, inflammatory, auto-immune disease that is majorly associated with the degradation of the synovial linings of the joints. It is a progressive disease that reduces the life span in affected individuals. Nanoparticles involving hyaluronic acid (HA) have gained the limelight for designing target-specific and more effective drug delivery options for RA. HA is found abundantly in the synovial fluid and acts as a natural ligand for the CD44 receptors. The targeted delivery approach using CD44 as the target can help in minimizing off-target drug distribution. These HA-based surface-decorated nanocarriers, hydrogels, and MNs are cutting-edge strategies that promise tailored delivery, fewer side effects, and more patient adherence to address the common issues associated with RA therapy. Considering the above facts, this review attempts to discuss the role of HA in making more effective formulations for therapeutic delivery in treating RA. Additionally, it provides a comprehensive overview of the potential advancements, mainly in treating RA by HA-based topical, transdermal, and parenteral drug delivery systems, with relevant case studies. The existing difficulties and potential paths for future research on HA-based non-conventional formulations for the management of RA are also discussed.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Jeevika Daryani
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
8
|
Shriky B, Babenko M, Whiteside BR. Dissolving and Swelling Hydrogel-Based Microneedles: An Overview of Their Materials, Fabrication, Characterization Methods, and Challenges. Gels 2023; 9:806. [PMID: 37888379 PMCID: PMC10606778 DOI: 10.3390/gels9100806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Polymeric hydrogels are a complex class of materials with one common feature-the ability to form three-dimensional networks capable of imbibing large amounts of water or biological fluids without being dissolved, acting as self-sustained containers for various purposes, including pharmaceutical and biomedical applications. Transdermal pharmaceutical microneedles are a pain-free drug delivery system that continues on the path to widespread adoption-regulatory guidelines are on the horizon, and investments in the field continue to grow annually. Recently, hydrogels have generated interest in the field of transdermal microneedles due to their tunable properties, allowing them to be exploited as delivery systems and extraction tools. As hydrogel microneedles are a new emerging technology, their fabrication faces various challenges that must be resolved for them to redeem themselves as a viable pharmaceutical option. This article discusses hydrogel microneedles from a material perspective, regardless of their mechanism of action. It cites the recent advances in their formulation, presents relevant fabrication and characterization methods, and discusses manufacturing and regulatory challenges facing these emerging technologies before their approval.
Collapse
Affiliation(s)
- Bana Shriky
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK;
| | | | - Ben R. Whiteside
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK;
| |
Collapse
|
9
|
Lin Z, Zheng K, Zhong J, Zheng X. Advances in microneedle-based therapy for bone disorders. Biomed Pharmacother 2023; 165:115013. [PMID: 37531783 DOI: 10.1016/j.biopha.2023.115013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 08/04/2023] Open
Abstract
Bone-related disorders treatment is a serious public health concern, imposing a significant social and economic burden on patients and healthcare systems. Although conventional drug delivery systems have made advances in bone diseases prevention and management, the limited delivery efficiency and convoluted focal environment lead to inadequate drug absorption and lack of specificity to achieve the intended therapeutic impact. Microneedle-based therapy represents an extraordinarily safe and well-tolerable therapeutic approach for treating bone disorders, providing improved efficacy by breaking down the barriers and delivery of therapeutic components to the target sites with programable release profiles in a less invasive manner. Over the past decades, numerous significant achievements in the development of various types of drug-carried microneedles have been made to address the obstacles encountered in the bone-treating procedure, enabling the microneedle-based therapy to take an important step in practical applications. In this light, this review summarizes these remarkable researches in terms of microneedles types and drug delivery strategies, with the goal of demonstrating the benefits of exploiting microneedle-based therapy as a novel strategy for treating bone-related disorders. The remaining challenges and future perspectives are also discussed in the hope of inspiring more efficient and intelligent bone treatment strategies.
Collapse
Affiliation(s)
- Zengping Lin
- Department of Orthopaedics, Fujian Provincial 2nd People's Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, China.
| | - Kanghua Zheng
- Department of Rehabilitation, Fujian Provincial 2nd People's Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, China
| | - Jiping Zhong
- Department of Orthopaedics, Fujian Provincial 2nd People's Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, China
| | - Xufeng Zheng
- Department of Orthopaedics, Fujian Provincial 2nd People's Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, China
| |
Collapse
|
10
|
Lu Y, Xiao T, Lai R, Liu Z, Luo W, Wang Y, Fu S, Chai G, Jia J, Xu Y. Co-Delivery of Loxoprofen and Tofacitinib by Photothermal Microneedles for Rheumatoid Arthritis Treatment. Pharmaceutics 2023; 15:pharmaceutics15051500. [PMID: 37242742 DOI: 10.3390/pharmaceutics15051500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of synovial inflammation that affects populations worldwide. Transdermal drug delivery systems for treating RA have increased but remain challenging. We fabricated a dissolving microneedle (MN) system with photothermal (PT) polydopamine (PDA) to co-load the non-steroidal anti-inflammatory drug loxoprofen (Lox) and the Janus kinase inhibitor tofacitinib (Tof), with the aim of co-delivering Lox and Tof directly to the articular cavity, aided by the combination of MN and PT. In vitro and in vivo permeation studies showed that the PT MN significantly promoted drug permeation and retention in the skin. An in vivo visualization of the drug distribution in the articular cavity showed that the PT MN significantly promoted drug retention in the articular cavity. Importantly, compared to the intra-articular injection of Lox and Tof, the application of the PT MN to a carrageenan/kaolin-induced arthritis rat model exhibited superior performance in reducing joint swelling, muscle atrophy, and cartilage destruction. Furthermore, the PT MN downregulated the mRNA expression levels of proinflammatory cytokines, including TNF-α, IL-1β, iNOS, JAK2, JAK3, and STAT3. The results show that the PT MN transdermal co-delivery of Lox and Tof is a new synergetic therapy with high compliance and good therapeutic efficacy for RA.
Collapse
Affiliation(s)
- Yi Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ting Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongrong Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziyi Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weixuan Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixuan Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shijia Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guihong Chai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jinjing Jia
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Chu X, Du X, Yang L, Wang Z, Zhang Y, Wang X, Dai L, Zhang J, Liu J, Zhang N, Zhao Y, Gu H. Targeting Tumor Necrosis Factor Receptor 1 with Selected Aptamers for Anti-Inflammatory Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11599-11608. [PMID: 36812453 DOI: 10.1021/acsami.3c00131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tumor necrosis factor-α (TNFα) inhibitors are widely used in treating autoimmune diseases like rheumatoid arthritis (RA). These inhibitors can presumably alleviate RA symptoms by blocking TNFα-TNF receptor 1 (TNFR1)-mediated pro-inflammatory signaling pathways. However, the strategy also interrupts the survival and reproduction functions conducted by TNFα-TNFR2 interaction and causes side effects. Thus, it is urgently needed to develop inhibitors that can selectively block TNFα-TNFR1 but not TNFα-TNFR2. Here, nucleic acid-based aptamers against TNFR1 are explored as potential anti-RA candidates. Through the systematic evolution of ligands by exponential enrichment (SELEX), two types of TNFR1-targeting aptamers were obtained, and their KD values are approximately 100-300 nM. In silico analysis shows that the binding interface of aptamer-TNFR1 highly overlapped with natural TNFα-TNFR1 binding. On the cellular level, the aptamers can exert TNFα inhibitory activity by binding to TNFR1. The anti-inflammatory efficiencies of aptamers were assessed and further enhanced using divalent aptamer constructs. These findings provide a new strategy to block TNFR1 for potential anti-RA treatment precisely.
Collapse
Affiliation(s)
- Xiao Chu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Fudan University Shanghai Cancer Center, and Institutes of Biomedical Sciences, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, China
| | - Xinyu Du
- Fudan University Shanghai Cancer Center, and Institutes of Biomedical Sciences, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, China
| | - Longhua Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ziyi Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yi Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaonan Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lijun Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangnan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Liu
- Fudan University Shanghai Cancer Center, and Institutes of Biomedical Sciences, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, China
| | - Nan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongxing Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and Institutes of Biomedical Sciences, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Stimulus-responsive and dual-target DNA nanodrugs for rheumatoid arthritis treatment. Int J Pharm 2023; 632:122543. [PMID: 36572263 DOI: 10.1016/j.ijpharm.2022.122543] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor receptor-1 (TNFR1) and DEK are closely associated with the development of rheumatoid arthritis (RA). Taking advantage of the high adenosine triphosphate (ATP) in RA microenvironment and the interactions of DNA aptamers with their targets, an ATP-responsive DNA nanodrug was constructed that simultaneously targets TNFR1 and DEK for RA therapy. To this end, DEK target aptamer DTA and TNFR1 target aptamer Apt1-67 were equipped with sticky ends to hybridize with ATP aptamer (AptATP) and fabricated DNA nanodrug DAT. Our results showed that DAT was successfully prepared with good stability. In the presence of ATP, DAT was disassembled, resulting in the release of DTA and Apt1-67. In vitro studies demonstrated that DAT was superior to the non-responsive DNA nanodrug TD-3A3T in terms of anti-inflammation activity and ATP was inevitable to maximize the anti-inflammation ability of DAT. The superior efficacy of DAT is attributed to the more potent inhibition of caspase-3 and NETs formation. In vivo results further confirmed the anti-RA efficacy of DAT, whereas the administration routes (intravenous injection and transdermal administration via microneedles) did not cause significant differences. Overall, the present study supplies an intelligent strategy for RA therapy and explores a promising administration route for future clinical medication of RA patients.
Collapse
|