1
|
Maes L, Szabó A, Van Haevermaete J, Geurs I, Dewettinck K, Vandenbroucke RE, Van Vlierberghe S, Laukens D. Digital light processing of photo-crosslinkable gelatin to create biomimetic 3D constructs serving small intestinal tissue regeneration. BIOMATERIALS ADVANCES 2025; 171:214232. [PMID: 39983500 DOI: 10.1016/j.bioadv.2025.214232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/27/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Regeneration of small intestinal mucosal tissue could offer a promising strategy for Crohn's disease patients suffering from chronic inflammatory damage. Here, we aimed to develop hydrogels that mirror the villi and crypts of the small intestine and exhibit a physiological stiffness of G' ~ 1.52 kPa. For this purpose, we developed gelatin-methacryloyl-aminoethyl-methacrylate (gel-MA-AEMA)-, and gelatin-methacryloyl-norbornene (gel-MA-NB)-based biomaterial inks to fabricate 3D hydrogels ("villi only" versus "crypts and villi") with digital light processing (DLP) and co-cultured Caco-2/HT29-MTX cells. Gel-MA-AEMA was selected for its higher amount of methacrylates which was hypothesized to provide superior photo-crosslinking kinetics and hence superior DLP fabrication potential while gel-MA-NB was evaluated for its selective functionalization potential with thiolated bioactive compounds following DLP processing, resulting from its incorporated NB moieties which remain unreacted during the DLP process. Both gel-MA-AEMA-, and gel-MA-NB-based hydrogels exhibited a physiologically relevant stiffness, but only the gel-MA-AEMA-based biomaterial ink could be successfully utilized for printing hydrogels encompassing villi and crypts. Paracellular permeability of small sized marker molecules in combination with transepithelial electrical resistance measurements showed the formation of a functional barrier over time on all hydrogel constructs. Transmission electron microscopy and enterocyte differentiation marker genes' expression levels revealed the superior differentiation of Caco-2 on the 3D constructs compared to 2D hydrogel sheets. In summary, while both hydrogels enhanced functional barrier formation and enterocyte differentiation, gel-MA-AEMA proved more conducive to DLP compared to gel-MA-NB. Furthermore, our study underscored the benefits of cultivating intestinal cells on soft 3D constructs, enhancing cell barrier properties and differentiation, thus providing added value over traditional 2D supports.
Collapse
Affiliation(s)
- Laure Maes
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium; Barriers in Inflammation Lab, Department of Biomedical Molecular Biology, Ghent University, Ghent 9000, Belgium; VIB-UGent Center for Inflammation Research, VIB, Ghent 9000, Belgium
| | - Anna Szabó
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Jens Van Haevermaete
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium; Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Indi Geurs
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Ghent University, Ghent 9000, Belgium
| | - Koen Dewettinck
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Ghent University, Ghent 9000, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Lab, Department of Biomedical Molecular Biology, Ghent University, Ghent 9000, Belgium; VIB-UGent Center for Inflammation Research, VIB, Ghent 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium.
| | - Debby Laukens
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
2
|
Kaden T, Alonso‐Román R, Stallhofer J, Gresnigt MS, Hube B, Mosig AS. Leveraging Organ-on-Chip Models to Investigate Host-Microbiota Dynamics and Targeted Therapies for Inflammatory Bowel Disease. Adv Healthc Mater 2025; 14:e2402756. [PMID: 39491534 PMCID: PMC12004439 DOI: 10.1002/adhm.202402756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Indexed: 11/05/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic gastrointestinal disease with drastically increasing incidence rates. Due to its multifactorial etiology, a precise investigation of the pathogenesis is extremely difficult. Although reductionist cell culture models and more complex disease models in animals have clarified the understanding of individual disease mechanisms and contributing factors of IBD in the past, it remains challenging to bridge research and clinical practice. Conventional 2D cell culture models cannot replicate complex host-microbiota interactions and stable long-term microbial culture. Further, extrapolating data from animal models to patients remains challenging due to genetic and environmental diversity leading to differences in immune responses. Human intestine organ-on-chip (OoC) models have emerged as an alternative in vitro model approach to investigate IBD. OoC models not only recapitulate the human intestinal microenvironment more accurately than 2D cultures yet may also be advantageous for the identification of important disease-driving factors and pharmacological interventions targets due to the possibility of emulating different complexities. The predispositions and biological hallmarks of IBD focusing on host-microbiota interactions at the intestinal mucosal barrier are elucidated here. Additionally, the potential of OoCs to explore microbiota-related therapies and personalized medicine for IBD treatment is discussed.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH07745JenaGermany
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
| | - Raquel Alonso‐Román
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Junior Research Group Adaptive Pathogenicity StrategiesLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
| | | | - Mark S. Gresnigt
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Junior Research Group Adaptive Pathogenicity StrategiesLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
| | - Bernhard Hube
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐Institute07745JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
- Institute of MicrobiologyFaculty of Biological SciencesFriedrich Schiller University07743JenaGermany
| | - Alexander S. Mosig
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07745JenaGermany
| |
Collapse
|
3
|
Calvigioni M, Mazzantini D, Celandroni F, Vozzi G, Ghelardi E. Cultivating complexity: Advancements in establishing in vitro models for the mucus-adhering gut microbiota. Microb Biotechnol 2024; 17:e70036. [PMID: 39435730 PMCID: PMC11494453 DOI: 10.1111/1751-7915.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
A healthy mucus is essential for maintaining intestinal homeostasis and overall well-being. In recent years, extensive research focused on understanding the intricate interactions between mucus and the gut microbiota. Mucus-adhering bacteria play crucial roles in preserving barrier integrity, epithelial permeability and mucus architecture, as well as in the colonization resistance against pathogens. Unravelling the significance of these microorganisms in human health and disease is challenging, primarily because most of the studies on the human gut microbiota rely on faecal samples, which do not fully represent the microecological complexity found in the intestinal mucosa. This review discusses novel strategies to specifically target and evaluate the mucosal microbiota, such as culturomics applied to mucosal biopsies or brushings, intestinal organoids and artificial in vitro models incorporating mucus.
Collapse
Affiliation(s)
- Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Giovanni Vozzi
- Department of Information BioengineeringUniversity of PisaPisaItaly
- Research Center Enrico PiaggioUniversity of PisaPisaItaly
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
- Research Center Nutraceuticals and Food for Health – NutrafoodUniversity of PisaPisaItaly
| |
Collapse
|
4
|
Haddad MJ, Zuluaga-Arango J, Mathieu H, Barbezier N, Anton PM. Intestinal Epithelial Co-Culture Sensitivity to Pro-Inflammatory Stimuli and Polyphenols Is Medium-Independent. Int J Mol Sci 2024; 25:7360. [PMID: 39000465 PMCID: PMC11242137 DOI: 10.3390/ijms25137360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
The complexification of in vitro models requires the compatibility of cells with the same medium. Since immune cells are the most sensitive to growth conditions, growing intestinal epithelial cells in their usual medium seems to be necessary. This work was aimed at comparing the sensitivity of these epithelial cells to pro-inflammatory stimuli but also to dietary polyphenols in both DMEM and RPMI-1640 media. Co-cultures of Caco-2 and HT29-MTX cells were grown for 21 days in the two media before their stimulation with a cocktail of TNF-α (20 ng/mL), IL-1β (1 ng/mL), and IFN-γ (10 ng/mL) or with LPS (10 ng/mL) from E. coli (O111:B4). The role of catechins (15 µM), a dietary polyphenol, was evaluated after its incubation with the cells before their stimulation for 6 h. The RPMI-1640 medium did not alter the intensity of the inflammatory response observed with the cytokines. By contrast, LPS failed to stimulate the co-culture in inserts regardless of the medium used. Lastly, catechins were unable to prevent the pro-inflammatory response observed with the cytokines in the two media. The preservation of the response of this model of intestinal epithelium in RPMI-1640 medium is promising when considering its complexification to evaluate the complex cellular crosstalk leading to intestinal homeostasis.
Collapse
Affiliation(s)
- Michelle J Haddad
- Transformations et Agroressources, ULR 7519, Institut Polytechnique UniLaSalle, Université d'Artois, 60000 Beauvais, France
- HCS Pharma, 59120 Loos, France
| | - Juanita Zuluaga-Arango
- Transformations et Agroressources, ULR 7519, Institut Polytechnique UniLaSalle, Université d'Artois, 60000 Beauvais, France
| | - Hugo Mathieu
- Transformations et Agroressources, ULR 7519, Institut Polytechnique UniLaSalle, Université d'Artois, 60000 Beauvais, France
| | - Nicolas Barbezier
- Transformations et Agroressources, ULR 7519, Institut Polytechnique UniLaSalle, Université d'Artois, 60000 Beauvais, France
| | - Pauline M Anton
- Transformations et Agroressources, ULR 7519, Institut Polytechnique UniLaSalle, Université d'Artois, 60000 Beauvais, France
| |
Collapse
|
5
|
McCoy R, Oldroyd S, Yang W, Wang K, Hoven D, Bulmer D, Zilbauer M, Owens RM. In Vitro Models for Investigating Intestinal Host-Pathogen Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306727. [PMID: 38155358 PMCID: PMC10885678 DOI: 10.1002/advs.202306727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Indexed: 12/30/2023]
Abstract
Infectious diseases are increasingly recognized as a major threat worldwide due to the rise of antimicrobial resistance and the emergence of novel pathogens. In vitro models that can adequately mimic in vivo gastrointestinal physiology are in high demand to elucidate mechanisms behind pathogen infectivity, and to aid the design of effective preventive and therapeutic interventions. There exists a trade-off between simple and high throughput models and those that are more complex and physiologically relevant. The complexity of the model used shall be guided by the biological question to be addressed. This review provides an overview of the structure and function of the intestine and the models that are developed to emulate this. Conventional models are discussed in addition to emerging models which employ engineering principles to equip them with necessary advanced monitoring capabilities for intestinal host-pathogen interrogation. Limitations of current models and future perspectives on the field are presented.
Collapse
Affiliation(s)
- Reece McCoy
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Sophie Oldroyd
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Woojin Yang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Kaixin Wang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Darius Hoven
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - David Bulmer
- Department of PharmacologyUniversity of CambridgeCambridgeCB2 1PDUK
| | - Matthias Zilbauer
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| |
Collapse
|
6
|
Calvigioni M, Mazzantini D, Celandroni F, Ghelardi E. Animal and In Vitro Models as Powerful Tools to Decipher the Effects of Enteric Pathogens on the Human Gut Microbiota. Microorganisms 2023; 12:67. [PMID: 38257894 PMCID: PMC10818369 DOI: 10.3390/microorganisms12010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Examining the interplay between intestinal pathogens and the gut microbiota is crucial to fully comprehend the pathogenic role of enteropathogens and their broader impact on human health. Valid alternatives to human studies have been introduced in laboratory practice to evaluate the effects of infectious agents on the gut microbiota, thereby exploring their translational implications in intestinal functionality and overall health. Different animal species are currently used as valuable models for intestinal infections. In addition, considering the recent advances in bioengineering, futuristic in vitro models resembling the intestinal environment are also available for this purpose. In this review, the impact of the main human enteropathogens (i.e., Clostridioides difficile, Campylobacter jejuni, diarrheagenic Escherichia coli, non-typhoidal Salmonella enterica, Shigella flexneri and Shigella sonnei, Vibrio cholerae, and Bacillus cereus) on intestinal microbial communities is summarized, with specific emphasis on results derived from investigations employing animal and in vitro models.
Collapse
Affiliation(s)
| | | | | | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.C.)
| |
Collapse
|
7
|
Ou Z, Situ B, Huang X, Xue Y, He X, Li Q, Ou D, He B, Chen J, Huang Y, Deng L, Zhang M, Wang Q, Zheng L. Single-particle analysis of circulating bacterial extracellular vesicles reveals their biogenesis, changes in blood and links to intestinal barrier. J Extracell Vesicles 2023; 12:e12395. [PMID: 38050834 PMCID: PMC10696524 DOI: 10.1002/jev2.12395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/11/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Bacterial extracellular vesicles (BEVs) are nano-size particles secreted by bacteria that carry various bioactive components. These vesicles are thought to provide a new window into the mechanisms by which bacteria affect their hosts, but their fundamental proprieties within human remain poorly understood. Here, we developed a single-vesicle analytical platform that enabled BEV detection in complex biological samples of host. Using this platform, we found the presence of BEVs in the host circulation and they were mainly derived from gut microbes. We showed that the levels of circulating BEVs in humans significantly increased with aging due to an age-related increase in intestinal permeability. Significantly different levels of BEVs in blood were also found in patients with colorectal cancer and colitis. Together, our study provides new insights into circulating BEV biology and reveals their potential as a new class of biomarkers.
Collapse
Affiliation(s)
- Zihao Ou
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Bo Situ
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xinyue Huang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yicong Xue
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaojing He
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qianbei Li
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Dejin Ou
- Department of Laboratory MedicineThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Bairong He
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jing Chen
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yiyao Huang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lulu Deng
- Medical Laboratory CenterGuangzhou Red Cross HospitalGuangzhouChina
| | - Minying Zhang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qian Wang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lei Zheng
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
8
|
Donahue R, Sahoo JK, Rudolph S, Chen Y, Kaplan DL. Mucosa-Mimetic Materials for the Study of Intestinal Homeostasis and Disease. Adv Healthc Mater 2023; 12:e2300301. [PMID: 37329337 DOI: 10.1002/adhm.202300301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Mucus is a viscoelastic hydrogel that lines and protects the epithelial surfaces of the body that houses commensal microbiota and functions in host defense against pathogen invasion. As a first-line physical and biochemical barrier, intestinal mucus is involved in immune surveillance and spatial organization of the microbiome, while dysfunction of the gut mucus barrier is implicated in several diseases. Mucus can be collected from a variety of mammalian sources for study, however, established methods are challenging in terms of scale and efficiency, as well as with regard to rheological similarity to native human mucus. Therefore, there is a need for mucus-mimetic hydrogels that more accurately reflect the physical and chemical profile of the in vivo human epithelial environment to enable the investigation of the role of mucus in human disease and interactions with the intestinal microbiome. This review will evaluate the material properties of synthetic mucus mimics to date designed to address the above need, with a focus toward an improved understanding of the biochemical and immunological functions of these biopolymers related to utility for research and therapeutic applications.
Collapse
Affiliation(s)
- Rebecca Donahue
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| |
Collapse
|
9
|
Calvigioni M, Panattoni A, Biagini F, Donati L, Mazzantini D, Massimino M, Daddi C, Celandroni F, Vozzi G, Ghelardi E. Impact of Bacillus cereus on the Human Gut Microbiota in a 3D In Vitro Model. Microorganisms 2023; 11:1826. [PMID: 37512998 PMCID: PMC10385275 DOI: 10.3390/microorganisms11071826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
In vitro models for culturing complex microbial communities are progressively being used to study the effects of different factors on the modeling of in vitro-cultured microorganisms. In previous work, we validated a 3D in vitro model of the human gut microbiota based on electrospun gelatin scaffolds covered with mucins. The aim of this study was to evaluate the effect of Bacillus cereus, a pathogen responsible for food poisoning diseases in humans, on the gut microbiota grown in the model. Real-time quantitative PCR and 16S ribosomal RNA-gene sequencing were performed to obtain information on microbiota composition after introducing B. cereus ATCC 14579 vegetative cells or culture supernatants. The adhesion of B. cereus to intestinal mucins was also tested. The presence of B. cereus induced important modifications in the intestinal communities. Notably, levels of Proteobacteria (particularly Escherichia coli), Lactobacillus, and Akkermansia were reduced, while abundances of Bifidobacterium and Mitsuokella increased. In addition, B. cereus was able to adhere to mucins. The results obtained from our in vitro model stress the hypothesis that B. cereus is able to colonize the intestinal mucosa by stably adhering to mucins and impacting intestinal microbial communities as an additional pathogenetic mechanism during gastrointestinal infection.
Collapse
Affiliation(s)
- Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Adelaide Panattoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Francesco Biagini
- Department of Information Bioengineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "Enrico Piaggio", University of Pisa, 56126 Pisa, Italy
| | - Leonardo Donati
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Mariacristina Massimino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Costanza Daddi
- Department of Information Bioengineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "Enrico Piaggio", University of Pisa, 56126 Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Giovanni Vozzi
- Department of Information Bioengineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "Enrico Piaggio", University of Pisa, 56126 Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| |
Collapse
|
10
|
Anthocyanin extract from black rice attenuates chronic inflammation in DSS-induced colitis mouse model by modulating the gut microbiota. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Abstract
There is substantial evidence for the probiotic activity of anthocyanins, but the relationship between anthocyanins involved in the regulation of microbiota and intestinal inflammation has not been fully elucidated. The aim of this study was to investigate the regulatory effects of black rice anthocyanin extract (BRAE) on intestinal microbiota imbalance in mice with dextran sulfate sodium (DSS)-induced chronic colitis. DSS was added into drinking water to induce a mouse model of chronic experimental colitis, and BRAE was given by gavage (200 mg/kg/day) for 4 weeks. Body weight, fecal viscosity, and hematochezia were monitored during administration. After mice were sacrificed, the serum concentrations of TNF-α and IL-6 were detected by enzyme-linked immunosorbent assay, and the composition of intestinal flora was analyzed by 16S rDNA sequencing. The results showed that BRAE significantly suppressed DSS-induced colonic inflammatory phenotypes and maintained colon length in mice. In addition, BRAE reduced intestinal permeability and improved intestinal barrier dysfunction in mice with colitis. Gut microbiota analysis showed that BRAE significantly improved the imbalance of intestinal microecological diversity caused by DSS, inhibited the increase in the relative abundance of inflammatory bacteria, and promoted the abundance of anti-inflammatory probiotics including Akkermansia spp.
Collapse
|
11
|
Abstract
Enteric bacterial infections contribute substantially to global disease burden and mortality, particularly in the developing world. In vitro 2D monolayer cultures have provided critical insights into the fundamental virulence mechanisms of a multitude of pathogens, including Salmonella enterica serovars Typhimurium and Typhi, Vibrio cholerae, Shigella spp., Escherichia coli and Campylobacter jejuni, which have led to the identification of novel targets for antimicrobial therapy and vaccines. In recent years, the arsenal of experimental systems to study intestinal infections has been expanded by a multitude of more complex models, which have allowed to evaluate the effects of additional physiological and biological parameters on infectivity. Organoids recapitulate the cellular complexity of the human intestinal epithelium while 3D bioengineered scaffolds and microphysiological devices allow to emulate oxygen gradients, flow and peristalsis, as well as the formation and maintenance of stable and physiologically relevant microbial diversity. Additionally, advancements in ex vivo cultures and intravital imaging have opened new possibilities to study the effects of enteric pathogens on fluid secretion, barrier integrity and immune cell surveillance in the intact intestine. This review aims to present a balanced and updated overview of current intestinal in vitro and ex vivo methods for modeling of enteric bacterial infections. We conclude that the different paradigms are complements rather than replacements and their combined use promises to further our understanding of host-microbe interactions and their impacts on intestinal health.
Collapse
Affiliation(s)
- Nayere Taebnia
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- CONTACT Ute Römling Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Volker M. Lauschke Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
12
|
Silini AR, Ramuta TŽ, Pires AS, Banerjee A, Dubus M, Gindraux F, Kerdjoudj H, Maciulatis J, Weidinger A, Wolbank S, Eissner G, Giebel B, Pozzobon M, Parolini O, Kreft ME. Methods and criteria for validating the multimodal functions of perinatal derivatives when used in oncological and antimicrobial applications. Front Bioeng Biotechnol 2022; 10:958669. [PMID: 36312547 PMCID: PMC9607958 DOI: 10.3389/fbioe.2022.958669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Perinatal derivatives or PnDs refer to tissues, cells and secretomes from perinatal, or birth-associated tissues. In the past 2 decades PnDs have been highly investigated for their multimodal mechanisms of action that have been exploited in various disease settings, including in different cancers and infections. Indeed, there is growing evidence that PnDs possess anticancer and antimicrobial activities, but an urgent issue that needs to be addressed is the reproducible evaluation of efficacy, both in vitro and in vivo. Herein we present the most commonly used functional assays for the assessment of antitumor and antimicrobial properties of PnDs, and we discuss their advantages and disadvantages in assessing the functionality. This review is part of a quadrinomial series on functional assays for the validation of PnDs spanning biological functions such as immunomodulation, anticancer and antimicrobial, wound healing, and regeneration.
Collapse
Affiliation(s)
- Antonietta R. Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Taja Železnik Ramuta
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Salomé Pires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marie Dubus
- Université de Reims Champagne Ardenne, EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon and Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Justinas Maciulatis
- The Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Günther Eissner
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Department of Women’s and Children’s Health, University of Padova, Fondazione Istituto di Ricerca Pediatrica Città Della Speranza, Padoa, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica Del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Mateja Erdani Kreft,
| |
Collapse
|