1
|
Cerioli N, Bououdina W, Mereu A, Natsaridis E, Salsetta J, Cova A, Lupoli G, D’Angelo E, Rivoltini L, Figdor CG, Huber V, Tagit O. Reprogramming the melanoma and immunosuppressive myeloid cells with esomeprazole-loaded PLGA nanoparticles. iScience 2025; 28:111559. [PMID: 39839438 PMCID: PMC11750290 DOI: 10.1016/j.isci.2024.111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/04/2024] [Accepted: 12/05/2024] [Indexed: 01/23/2025] Open
Abstract
Proton pump inhibitors have been explored for potentiating cancer therapies via reverting the tumor acidity and promoting the activation of anti-tumor immune responses. To regulate the intracellular pH of melanoma and immunosuppressive myeloid cells, we developed poly(L-lactide-co-glycolide) nanoparticles loaded with esomeprazole (ESO-NPs). The effect of ESO-NPs on melanoma cells was observed as alkalinization and reduction of melanin content accompanied by a decrease of microphthalmia-associated transcription factor (MITF), poliovirus receptor (PVR), and programmed death ligand 1 (PD-L1) immune checkpoint expression. ESO-NP treatment of melanoma-patient-derived and in vitro-induced myeloid-derived suppressor cells (MDSCs) reduced the expression of immunosuppression-associated molecules PD-L1, CD206, and CD163 on patient-derived myeloid cells while inducing the expression of co-stimulatory molecule CD86 and HLA-DR in the in vitro model. Our findings suggest that reprogramming the intracellular pH of melanoma and immune-suppression-associated myeloid cells with ESO-NPs can modulate the expression of proteins involved in resistance to cancer therapy and immunosuppression, thus potentially improving the response to immunotherapies.
Collapse
Affiliation(s)
- Nicola Cerioli
- Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Wissem Bououdina
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alessandro Mereu
- Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Evangelos Natsaridis
- Group of Biointerfaces, Institute of Chemistry and Bioanalytics, School of Life Sciences FHNW, Muttenz, Switzerland
| | - Jeannette Salsetta
- Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Agata Cova
- Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gianpiero Lupoli
- Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisa D’Angelo
- Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carl G. Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Veronica Huber
- Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Oya Tagit
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Group of Biointerfaces, Institute of Chemistry and Bioanalytics, School of Life Sciences FHNW, Muttenz, Switzerland
| |
Collapse
|
2
|
Jäger E, Ilina O, Dölen Y, Valente M, van Dinther EA, Jäger A, Figdor CG, Verdoes M. pH and ROS Responsiveness of Polymersome Nanovaccines for Antigen and Adjuvant Codelivery: An In Vitro and In Vivo Comparison. Biomacromolecules 2024; 25:1749-1758. [PMID: 38236997 PMCID: PMC10934262 DOI: 10.1021/acs.biomac.3c01235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/12/2024]
Abstract
The antitumor immunity can be enhanced through the synchronized codelivery of antigens and immunostimulatory adjuvants to antigen-presenting cells, particularly dendritic cells (DCs), using nanovaccines (NVs). To study the influence of intracellular vaccine cargo release kinetics on the T cell activating capacities of DCs, we compared stimuli-responsive to nonresponsive polymersome NVs. To do so, we employed "AND gate" multiresponsive (MR) amphiphilic block copolymers that decompose only in response to the combination of chemical cues present in the environment of the intracellular compartments in antigen cross-presenting DCs: low pH and high reactive oxygen species (ROS) levels. After being unmasked by ROS, pH-responsive side chains are exposed and can undergo a charge shift within a relevant pH window of the intracellular compartments in antigen cross-presenting DCs. NVs containing the model antigen Ovalbumin (OVA) and the iNKT cell activating adjuvant α-Galactosylceramide (α-Galcer) were fabricated using microfluidics self-assembly. The MR NVs outperformed the nonresponsive NV in vitro, inducing enhanced classical- and cross-presentation of the OVA by DCs, effectively activating CD8+, CD4+ T cells, and iNKT cells. Interestingly, in vivo, the nonresponsive NVs outperformed the responsive vaccines. These differences in polymersome vaccine performance are likely linked to the kinetics of cargo release, highlighting the crucial chemical requirements for successful cancer nanovaccines.
Collapse
Affiliation(s)
- Eliézer Jäger
- Institute
of Macromolecular Chemistry, Academy of
Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Olga Ilina
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Yusuf Dölen
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Michael Valente
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Eric A.W. van Dinther
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Alessandro Jäger
- Institute
of Macromolecular Chemistry, Academy of
Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Carl G. Figdor
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Martijn Verdoes
- Department
of Medical BioSciences, Radboud University
Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
3
|
Imani S, Tagit O, Pichon C. Neoantigen vaccine nanoformulations based on Chemically synthesized minimal mRNA (CmRNA): small molecules, big impact. NPJ Vaccines 2024; 9:14. [PMID: 38238340 PMCID: PMC10796345 DOI: 10.1038/s41541-024-00807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Recently, chemically synthesized minimal mRNA (CmRNA) has emerged as a promising alternative to in vitro transcribed mRNA (IVT-mRNA) for cancer therapy and immunotherapy. CmRNA lacking the untranslated regions and polyadenylation exhibits enhanced stability and efficiency. Encapsulation of CmRNA within lipid-polymer hybrid nanoparticles (LPPs) offers an effective approach for personalized neoantigen mRNA vaccines with improved control over tumor growth. LPP-based delivery systems provide superior pharmacokinetics, stability, and lower toxicity compared to viral vectors, naked mRNA, or lipid nanoparticles that are commonly used for mRNA delivery. Precise customization of LPPs in terms of size, surface charge, and composition allows for optimized cellular uptake, target specificity, and immune stimulation. CmRNA-encoded neo-antigens demonstrate high translational efficiency, enabling immune recognition by CD8+ T cells upon processing and presentation. This perspective highlights the potential benefits, challenges, and future directions of CmRNA neoantigen vaccines in cancer therapy compared to Circular RNAs and IVT-mRNA. Further research is needed to optimize vaccine design, delivery, and safety assessment in clinical trials. Nevertheless, personalized LPP-CmRNA vaccines hold great potential for advancing cancer immunotherapy, paving the way for personalized medicine.
Collapse
Affiliation(s)
- Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China.
| | - Oya Tagit
- Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Chantal Pichon
- Center of Molecular Biophysics, CNRS, Orléans, France.
- ART-ARNm, National Institute of Health and Medical Research (Inserm) and University of Orléans, Orléans, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|