1
|
Jangra N, Singla A, Puri V, Dheer D, Chopra H, Malik T, Sharma A. Herbal bioactive-loaded biopolymeric formulations for wound healing applications. RSC Adv 2025; 15:12402-12442. [PMID: 40248229 PMCID: PMC12005159 DOI: 10.1039/d4ra08604j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Recent advancements in wound healing technologies focus on incorporating herbal bioactives into biopolymeric formulations. A biocompatible matrix that promotes healing is provided by biopolymeric wound dressings. These dressings use components such as ulvan, hyaluronic acid, starch, cellulose, chitosan, alginate, gelatin, and pectin. These natural polymers assist in three crucial processes, namely, cell adhesion, proliferation, and moisture retention, all of which are necessary for effective wound repair. Curcumin, quercetin, Aloe vera, Vinca alkaloids, and Centella asiatica are some of the herbal bioactives that are included in biopolymeric formulations. They have powerful anti-inflammatory, antibacterial, and antioxidant activities. Chitosan, cellulose, collagen, alginate, and hyaluronic acid are some of the biopolymers that have shown promise in clinical trials for wound healing. These trials have also confirmed the safety and functional performance of these materials. Their recent advancements in wound care can be understood by the increasing number of patents linked to these formulations. These innovative dressings improve healing outcomes in acute and chronic wounds while minimizing adverse effects by incorporating biopolymers with herbal bioactives in an efficient manner. This review emphasizes that the development of next-generation wound care products can be facilitated via the integration of natural materials and bioactive substances.
Collapse
Affiliation(s)
- Nitin Jangra
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Aakanksha Singla
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai - 602105 Tamil Nadu India
| | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University Jimma Oromia Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara Punjab 144401 India
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| |
Collapse
|
2
|
Luca A, Cojocaru FD, Pascal MS, Vlad T, Nacu I, Peptu CA, Butnaru M, Verestiuc L. Decellularized Macroalgae as Complex Hydrophilic Structures for Skin Tissue Engineering and Drug Delivery. Gels 2024; 10:704. [PMID: 39590060 PMCID: PMC11593777 DOI: 10.3390/gels10110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Due to their indisputable biocompatibility and abundant source, biopolymers are widely used to prepare hydrogels for skin tissue engineering. Among them, cellulose is a great option for this challenging application due to its increased water retention capacity, mechanical strength, versatility and unlimited availability. Since algae are an unexploited source of cellulose, the novelty of this study is the decellularization of two different species, freshly collected from the Black Sea coast, using two different chemical surfactants (sodium dodecyl sulphate and Triton X-100), and characterisation of the resulted complex biopolymeric 3D matrices. The algae nature and decellularization agent significantly influenced the matrices porosity, while the values obtained for the hydration degree included them in hydrogel class. Moreover, their capacity to retain and then controllably release an anti-inflammatory drug, ibuprofen, led us to recommend the obtained structures as drug delivery systems. The decellularized macroalgae hydrogels are bioadhesive and cytocompatible in direct contact with human keratinocytes and represent a great support for cells. Finally, it was noticed that human keratinocytes (HaCaT cell line) adhered and populated the structures during a monitoring period of 14 days.
Collapse
Affiliation(s)
- Andreea Luca
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Florina-Daniela Cojocaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Maria Stella Pascal
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Teodora Vlad
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Isabella Nacu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Catalina Anisoara Peptu
- Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iaşi, 700050 Iasi, Romania;
| | - Maria Butnaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| |
Collapse
|
3
|
Zhou T, Li X. Chemically modified seaweed polysaccharides: Improved functional and biological properties and prospective in food applications. Compr Rev Food Sci Food Saf 2024; 23:e13396. [PMID: 38925601 DOI: 10.1111/1541-4337.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Seaweed polysaccharides are natural biomacromolecules with unique physicochemical properties (e.g., good gelling, emulsifying, and film-forming properties) and diverse biological activities (e.g., anticoagulant, antioxidant, immunoregulatory, and antitumor effects). Furthermore, they are nontoxic, biocompatible and biodegradable, and abundant in resources. Therefore, they have been widely utilized in food, cosmetics, and pharmaceutical industries. However, their properties and bioactivities sometimes are not satisfactory for some purposes. Modification of polysaccharides can impart the amphiphilicity and new functions to the biopolymers and change the structure and conformation, thus effectively improving their functional properties and biological activities so as to meet the requirement for targeted applications. This review outlined the modification methods of representative red algae polysaccharides (carrageenan and agar), brown algae polysaccharides (fucoidan, alginate, and laminaran), and green algae polysaccharides (ulvan) that have potential food applications, including etherification, esterification, degradation, sulfation, phosphorylation, selenylation, and so on. The improved functional properties and bioactivities of the modified seaweed polysaccharides and their potential food applications are also summarized.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Xinyue Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
4
|
Adarshan S, Sree VSS, Muthuramalingam P, Nambiar KS, Sevanan M, Satish L, Venkidasamy B, Jeelani PG, Shin H. Understanding Macroalgae: A Comprehensive Exploration of Nutraceutical, Pharmaceutical, and Omics Dimensions. PLANTS (BASEL, SWITZERLAND) 2023; 13:113. [PMID: 38202421 PMCID: PMC10780804 DOI: 10.3390/plants13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Driven by a surge in global interest in natural products, macroalgae or seaweed, has emerged as a prime source for nutraceuticals and pharmaceutical applications. Characterized by remarkable genetic diversity and a crucial role in marine ecosystems, these organisms offer not only substantial nutritional value in proteins, fibers, vitamins, and minerals, but also a diverse array of bioactive molecules with promising pharmaceutical properties. Furthermore, macroalgae produce approximately 80% of the oxygen in the atmosphere, highlighting their ecological significance. The unique combination of nutritional and bioactive attributes positions macroalgae as an ideal resource for food and medicine in various regions worldwide. This comprehensive review consolidates the latest advancements in the field, elucidating the potential applications of macroalgae in developing nutraceuticals and therapeutics. The review emphasizes the pivotal role of omics approaches in deepening our understanding of macroalgae's physiological and molecular characteristics. By highlighting the importance of omics, this review also advocates for continued exploration and utilization of these extraordinary marine organisms in diverse domains, including drug discovery, functional foods, and other industrial applications. The multifaceted potential of macroalgae warrants further research and development to unlock their full benefits and contribute to advancing global health and sustainable industries.
Collapse
Affiliation(s)
- Sivakumar Adarshan
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Vairavel Sivaranjani Sivani Sree
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Krishnanjana S Nambiar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Lakkakula Satish
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR—Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India;
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Peerzada Gh Jeelani
- Department of Biotechnology, Microbiology & Bioinformatics, National College Trichy, Tiruchirapalli 620001, Tamil Nadu, India;
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
| |
Collapse
|
5
|
Domozych DS, LoRicco JG. The extracellular matrix of green algae. PLANT PHYSIOLOGY 2023; 194:15-32. [PMID: 37399237 PMCID: PMC10762512 DOI: 10.1093/plphys/kiad384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Green algae display a wide range of extracellular matrix (ECM) components that include various types of cell walls (CW), scales, crystalline glycoprotein coverings, hydrophobic compounds, and complex gels or mucilage. Recently, new information derived from genomic/transcriptomic screening, advanced biochemical analyses, immunocytochemical studies, and ecophysiology has significantly enhanced and refined our understanding of the green algal ECM. In the later diverging charophyte group of green algae, the CW and other ECM components provide insight into the evolution of plants and the ways the ECM modulates during environmental stress. Chlorophytes produce diverse ECM components, many of which have been exploited for various uses in medicine, food, and biofuel production. This review highlights major advances in ECM studies of green algae.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | | |
Collapse
|
6
|
González-Meza GM, Elizondo-Luevano JH, Cuellar-Bermudez SP, Sosa-Hernández JE, Iqbal HMN, Melchor-Martínez EM, Parra-Saldívar R. New Perspective for Macroalgae-Based Animal Feeding in the Context of Challenging Sustainable Food Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:3609. [PMID: 37896072 PMCID: PMC10610262 DOI: 10.3390/plants12203609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Food production is facing challenging times due to the pandemic, and climate change. With production expected to double by 2050, there is a need for a new paradigm in sustainable animal feed supply. Seaweeds offer a highly valuable opportunity in this regard. Seaweeds are classified into three categories: brown (Phaeophyceae), red (Rhodophyceae), and green (Chlorophyceae). While they have traditionally been used in aquafeed, their demand in the feed market is growing, parallelly increasing according to the food demand. Additionally, seaweeds are being promoted for their nutritional benefits, which contribute to the health, growth, and performance of animals intended for human consumption. Moreover, seaweeds contain biologically active compounds such as polyunsaturated fatty acids, antioxidants (polyphenols), and pigments (chlorophylls and carotenoids), which possess beneficial properties, including antibacterial, antifungal, antiviral, antioxidant, and anti-inflammatory effects and act as prebiotics. This review offers a new perspective on the valorization of macroalgae biomass due to their nutritional profile and bioactive components, which have the potential to play a crucial role in animal growth and making possible new sources of healthy food ingredients.
Collapse
Affiliation(s)
- Georgia M. González-Meza
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Joel H. Elizondo-Luevano
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Sara P. Cuellar-Bermudez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
7
|
Hamouda RA, Alharthi MA, Alotaibi AS, Alenzi AM, Albalawi DA, Makharita RR. Biogenic Nanoparticles Silver and Copper and Their Composites Derived from Marine Alga Ulva lactuca: Insight into the Characterizations, Antibacterial Activity, and Anti-Biofilm Formation. Molecules 2023; 28:6324. [PMID: 37687153 PMCID: PMC10489668 DOI: 10.3390/molecules28176324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Bacterial pathogens cause pain and death, add significantly to the expense of healthcare globally, and pose a serious concern in many aspects of daily life. Additionally, they raise significant issues in other industries, including pharmaceuticals, clothing, and food packaging. Due to their unique properties, a great deal of attention has been given to biogenic metal nanoparticles, nanocomposites, and their applications against pathogenic bacteria. This study is focused on biogenic silver and copper nanoparticles and their composites (UL/Ag2 O-NPS, Ul/CuO-NPs, and Ul/Ag/Cu-NCMs) produced by the marine green alga Ulva lactuca. The characterization of biogenic nanoparticles UL/Ag2 O-NPS and Ul/CuO-NPs and their composites Ul/Ag/Cu-NCMs has been accomplished by FT-IR, SEM, TEM, EDS, XRD, and the zeta potential. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) experiments were conducted to prove antibacterial activity against both Gram-positive and Gram-negative bacteria and anti-biofilm. The FTIR spectroscopy results indicate the exiting band at 1633 cm-1, which represents N-H stretching in nanocomposites, with a small shift in both copper and silver nanoparticles, which is responsible for the bio-reduction of nanoparticles. The TEM image reveals that the Ul/Ag/Cu-NCMs were hexagonal, and the size distribution ranged from 10 to 35 nm. Meanwhile, Ul/CuO-NPs are rod-shaped, whereas UL/Ag2 O-NPS are spherical. The EDX analysis shows that Cu metal was present in a high weight percentage over Ag in the case of bio-Ag/Cu-NCMs. The X-ray diffraction denotes that Ul/Ag/Cu-NCMs, UL/CuO-NPs, and UL/Ag2 O-NPS were crystalline. The results predicted by the zeta potential demonstrate that Ul/Ag/Cu-NCMs were more stable than Ul/CuO-NPs. The antibacterial activity of UL/Ag2 O-NPS, Ul/Ag/Cu-NCMs, and UL/CuO-NPs was studied against eleven Gram-negative and Gram-positive multidrug-resistant bacterial species. The maximum inhibition zones were obtained with UL/Ag2 O-NPS, followed by Ul/Ag/Cu-NCMs and Ul/CuO-NPs in all the tested bacteria. The maximum anti-biofilm percentage formed by E. coli KY856933 was obtained with UL/Ag2 O-NPS. These findings suggest that the synthesized nanoparticles might be a great alternative for use as an antibacterial agent against different multidrug-resistant bacterial strains.
Collapse
Affiliation(s)
- Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt
| | - Mada A. Alharthi
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Amenah S. Alotaibi
- Genomic & Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Asma Massad Alenzi
- Genomic & Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Doha A. Albalawi
- Genomic & Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rabab R. Makharita
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
8
|
Lukova P, Katsarov P. Contemporary Aspects of Designing Marine Polysaccharide Microparticles as Drug Carriers for Biomedical Application. Pharmaceutics 2023; 15:2126. [PMID: 37631340 PMCID: PMC10458623 DOI: 10.3390/pharmaceutics15082126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The main goal of modern pharmaceutical technology is to create new drug formulations that are safer and more effective. These formulations should allow targeted drug delivery, improved drug stability and bioavailability, fewer side effects, and reduced drug toxicity. One successful approach for achieving these objectives is using polymer microcarriers for drug delivery. They are effective for treating various diseases through different administration routes. When creating pharmaceutical systems, choosing the right drug carrier is crucial. Biomaterials have become increasingly popular over the past few decades due to their lack of toxicity, renewable sources, and affordability. Marine polysaccharides, in particular, have been widely used as substitutes for synthetic polymers in drug carrier applications. Their inherent properties, such as biodegradability and biocompatibility, make marine polysaccharide-based microcarriers a prospective platform for developing drug delivery systems. This review paper explores the principles of microparticle design using marine polysaccharides as drug carriers. By reviewing the current literature, the paper highlights the challenges of formulating polymer microparticles, and proposes various technological solutions. It also outlines future perspectives for developing marine polysaccharides as drug microcarriers.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
9
|
Flórez-Fernández N, Vaamonde-García C, Torres MD, Buján M, Muíños A, Muiños A, Lamas-Vázquez MJ, Meijide-Faílde R, Blanco FJ, Domínguez H. Relevance of the Extraction Stage on the Anti-Inflammatory Action of Fucoidans. Pharmaceutics 2023; 15:pharmaceutics15030808. [PMID: 36986669 PMCID: PMC10058023 DOI: 10.3390/pharmaceutics15030808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The anti-inflammatory action of fucoidans is well known, based on both in vitro and some in vivo studies. The other biological properties of these compounds, their lack of toxicity, and the possibility of obtaining them from a widely distributed and renewable source, makes them attractive novel bioactives. However, fucoidans’ heterogeneity and variability in composition, structure, and properties depending on seaweed species, biotic and abiotic factors and processing conditions, especially during extraction and purification stages, make it difficult for standardization. A review of the available technologies, including those based on intensification strategies, and their influence on fucoidan composition, structure, and anti-inflammatory potential of crude extracts and fractions is presented.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Maria Dolores Torres
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Alexandra Muíños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - María J. Lamas-Vázquez
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
| | - Herminia Domínguez
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
10
|
Vaamonde-García C, Capelo-Mera E, Flórez-Fernández N, Torres MD, Rivas-Murias B, Mejide-Faílde R, Blanco FJ, Domínguez H. In Vitro Study of the Therapeutic Potential of Brown Crude Fucoidans in Osteoarthritis Treatment. Int J Mol Sci 2022; 23:14236. [PMID: 36430716 PMCID: PMC9698873 DOI: 10.3390/ijms232214236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis, one of the most common joint degenerative pathologies, still has no cure, and current treatments, such as nonsteroidal anti-inflammatory drugs, can cause serious adverse effects when taken for a long time. Brown seaweed crude fucoidans are used for the clinical treatment of several pathologies. In this study, the therapeutical potential of these biocompounds was analyzed in primary chondrocytes and the 260TT human chondrocyte cell line. Crude fucoidan from Undaria pinnatifida (Up) and Sargassum muticum (Sm) was obtained by different extraction techniques (microwave-assisted extraction, pressurized hot-water extraction, ultrasound-assisted extraction) and chemically and structurally characterized by Fourier transform infrared spectroscopy, high-performance size-exclusion chromatography, proton nuclear magnetic resonance, and scanning electron microscopy. Once cell viability was confirmed in chondrocytes treated with crude fucoidans, we evaluated their anti-inflammatory effects, observing a significant reduction in IL-6 production stimulated by IL-1β. Findings were confirmed by analysis of IL-6 and IL-8 gene expression, although only fucoidans from Up achieved a statistically significant reduction. Besides this, the antioxidant capacity of crude fucoidans was observed through the upregulation of Nrf-2 levels and the expression of its transcriptional target genes HO-1 and SOD-2, with compounds from Up again showing a more consistent effect. However, no evidence was found that crude fucoidans modulate senescence, as they failed to reduced β-galactosidase activity, cell proliferation, or IL-6 production in chondrocytes stimulated with etoposide. Thus, the findings of this research seem to indicate that the tested crude fucoidans are capable of partially alleviating OA-associated inflammation and oxidative stress, but fail to attenuate chondrocyte senescence.
Collapse
Affiliation(s)
- Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Emma Capelo-Mera
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Noelia Flórez-Fernández
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | - María Dolores Torres
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | | | - Rosa Mejide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
| | - Herminia Domínguez
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|