1
|
Wang Y, Ji M, Zhou L, Zhang Q, Lu X, Liu N, Li X, Lu S. Decoding the selective mechanism behind a monobody inhibitor to the phosphatase domain of SHP2: insights from molecular dynamics simulations. Phys Chem Chem Phys 2025. [PMID: 40230273 DOI: 10.1039/d5cp00211g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2), encoded by PTPN11, is a critical tyrosine phosphatase that regulates key cellular processes, including cell proliferation, survival, and migration. The catalytic activity of its protein tyrosine phosphatase (PTP) domain plays a pivotal role in cancer progression by activating oncogenic signaling pathways. In contrast, SHP1, another SH2 phosphatase encoded by PTPN6, generally functions as a tumor suppressor. Given their structural similarity yet distinct biological functions, developing selective SHP2-PTP inhibitors is crucial for targeted cancer therapy. Recently, a monobody, Mb (SHP2PTP_13) (Mb13), has been designed to bind to the SHP2-PTP structure specifically. However, the detailed mechanism involved in selective inhibition remains to be clarified. To achieve this objective, we conducted extensive molecular dynamics simulations of the Mb13-SHP2-PTP and Mb13-SHP1-PTP systems, together with multiple analyses, including cluster analysis, principal component analysis, free energy landscape evaluation, a cross-correlation matrix and binding free energy calculation. Our results demonstrated that Mb13 bound more stably to SHP2-PTP compared to SHP1-PTP. The SHP2 complex exhibited conformational stability and reduced flexibility, indicating a more substantial interaction. Detailed analysis revealed that key residues within SHP2-PTP formed more robust interactions with Mb13, enhancing the complex's overall stability. These findings suggested that the selective binding mechanism was primarily driven by specific stabilizing interactions at the molecular level. Overall, the enhanced understanding of SHP2-PTP's binding dynamics and stability offers valuable guidance for advancing drug design strategies targeting SHP2-mediated pathways.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Mingfei Ji
- Department of Urology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Linxuan Zhou
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Quan Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Wang Y, Qiao X, Zhu R, Zhou L, Zhang Q, Lu S, Chai Z. Computational Elucidation of a Monobody Targeting the Phosphatase Domain of SHP2. Biomolecules 2025; 15:217. [PMID: 40001520 PMCID: PMC11853358 DOI: 10.3390/biom15020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) is a key regulator in cellular signaling pathways because its dysregulation has been implicated in various pathological conditions, including cancers and developmental disorders. Despite its importance, the molecular basis of SHP2's regulatory mechanism remains poorly understood, hindering the development of effective targeted therapies. In this study, we utilized the high-specificity monobody Mb11 to investigate its interaction with the SHP2 phosphatase domain (PTP) using multiple replica molecular dynamics simulations. Our analyses elucidate the precise mechanisms through which Mb11 achieves selective recognition and stabilization of the SHP2-PTP domain, identifying key residues and interaction networks essential for its high binding specificity and regulatory dynamics. Furthermore, the study highlights the pivotal role of residue C459 in preserving the structural integrity and functional coherence of the complex, acting as a central node within the interaction network and underpinning its stability and efficiency. These findings have significantly advanced the understanding of the mechanisms underlying SHP2's involvement in disease-related signaling and pathology while simultaneously paving the way for the rational design of targeted inhibitors, offering significant implications for therapeutic strategies in SHP2-associated diseases and contributing to the broader scope of precision medicine.
Collapse
Affiliation(s)
- Yang Wang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.W.)
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xin Qiao
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.W.)
| | - Ruidi Zhu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.W.)
| | - Linxuan Zhou
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.W.)
| | - Quan Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.W.)
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.W.)
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zongtao Chai
- Department of Hepatic Surgery, Shanghai Geriatric Medical Center, Shanghai 201104, China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Qiao X, Li X, Zhang M, Liu N, Wu Y, Lu S, Chen T. Targeting cryptic allosteric sites of G protein-coupled receptors as a novel strategy for biased drug discovery. Pharmacol Res 2025; 212:107574. [PMID: 39755133 DOI: 10.1016/j.phrs.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are highly effective targets for therapeutic drugs. GPCRs couple different downstream effectors, including G proteins (such as Gi/o, Gs, G12, and Gq) and β-arrestins (such as β-arrestin 1 and β-arrestin 2) to mediate diverse cellular and physiological responses. Biased signaling allows for the specific activation of certain pathways from the full range of receptors' signaling capabilities. Targeting more variable allosteric sites, which are spatially different from the highly conserved orthosteric sites, represents a novel approach in biased GPCR drug discovery, leading to innovative strategies for targeting GPCRs. Notably, the emergence of cryptic allosteric sites on GPCRs has expanded the repertoire of available drug targets and improved receptor subtype selectivity. Here, we conduct a summary of recent progress in the structural determination of cryptic allosteric sites on GPCRs and elucidate the biased signaling mechanisms induced by allosteric modulators. Additionally, we discuss means to identify cryptic allosteric sites and design biased allosteric modulators based on cryptic allosteric sites through structure-based drug design, which is an advanced pharmacotherapeutic approach for treating GPCR-associated diseases.
Collapse
Affiliation(s)
- Xin Qiao
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Mingyang Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yanmei Wu
- Department of General Surgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
4
|
Zhang MY, Ao JY, Liu N, Chen T, Lu SY. Exploring the constitutive activation mechanism of the class A orphan GPR20. Acta Pharmacol Sin 2025; 46:500-511. [PMID: 39256608 PMCID: PMC11747167 DOI: 10.1038/s41401-024-01385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
GPR20, an orphan G protein-coupled receptor (GPCR), shows significant expression in intestinal tissue and represents a potential therapeutic target to treat gastrointestinal stromal tumors. GPR20 performs high constitutive activity when coupling with Gi. Despite the pharmacological importance of GPCR constitutive activation, determining the mechanism has long remained unclear. In this study, we explored the constitutive activation mechanism of GPR20 through large-scale unbiased molecular dynamics simulations. Our results unveil the allosteric nature of constitutively activated GPCR signal transduction involving extracellular and intracellular domains. Moreover, the constitutively active state of the GPR20 requires both the N-terminal cap and Gi protein. The N-terminal cap of GPR20 functions like an agonist and mediates long-range activated conformational shift. Together with the previous study, this study enhances our knowledge of the self-activation mechanism of the orphan receptor, facilitates the drug discovery efforts that target GPR20.
Collapse
Affiliation(s)
- Ming-Yang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian-Yang Ao
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Institute of Hepatobiliary and Pancreatic Surgery, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China.
| | - Shao-Yong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Liessmann F, von Bredow L, Meiler J, Liebscher I. Targeting adhesion G protein-coupled receptors. Current status and future perspectives. Structure 2024; 32:2188-2205. [PMID: 39520987 DOI: 10.1016/j.str.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
G protein-coupled receptors (GPCRs) orchestrate many physiological functions and are a crucial target in drug discovery. Adhesion GPCRs (aGPCRs), the second largest family within this superfamily, are promising yet underexplored targets for treating various diseases, including obesity, psychiatric disorders, and cancer. However, the receptors' unique and complex structure and miscellaneous interactions complicate comprehensive pharmacological studies. Despite recent progress in determining structures and elucidation of the activation mechanism, the function of many receptors remains to be determined. This review consolidates current knowledge on aGPCR ligands, focusing on small molecule orthosteric ligands and allosteric modulators identified for the ADGRGs subfamily (subfamily VIII), (GPR56/ADGRG1, GPR64/ADGRG2, GPR97/ADGRG3, GPR114/ADGRG5, GPR126/ADGRG6, and GPR128/ADGRG7). We discuss challenges in hit identification, target validation, and drug discovery, highlighting molecular compositions and recent structural breakthroughs. ADGRG ligands can offer new insights into aGPCR modulation and have significant potential for novel therapeutic interventions targeting various diseases.
Collapse
Affiliation(s)
- Fabian Liessmann
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany
| | - Lukas von Bredow
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany.
| |
Collapse
|
6
|
Pei S, Piao HL. Exploring Protein S-Palmitoylation: Mechanisms, Detection, and Strategies for Inhibitor Discovery. ACS Chem Biol 2024; 19:1868-1882. [PMID: 39160165 DOI: 10.1021/acschembio.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
S-palmitoylation is a reversible and dynamic process that involves the addition of long-chain fatty acids to proteins. This protein modification regulates various aspects of protein function, including subcellular localization, stability, conformation, and biomolecular interactions. The zinc finger DHHC (ZDHHC) domain-containing protein family is the main group of enzymes responsible for catalyzing protein S-palmitoylation, and 23 members have been identified in mammalian cells. Many proteins that undergo S-palmitoylation have been linked to disease pathogenesis and progression, suggesting that the development of effective inhibitors is a promising therapeutic strategy. Reducing the protein S-palmitoylation level can target either the PATs directly or their substrates. However, there are rare clinically effective S-palmitoylation inhibitors. This review aims to provide an overview of the S-palmitoylation field, including the catalytic mechanism of ZDHHC, S-palmitoylation detection methods, and the functional impact of protein S-palmitoylation. Additionally, this review focuses on current strategies for expanding the chemical toolbox to develop novel and effective inhibitors that can reduce the level of S-palmitoylation of the target protein.
Collapse
Affiliation(s)
- Shaojun Pei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, 110122 Shenyang, China
| |
Collapse
|
7
|
Hu MT, Ma WC, Wang JH, Jiang XQ, Yang DQ, Ao JY. Mechanistic insights into the allosteric inactivation mechanism of ZAP-70 induced by the hot spot W165C mutation. J Biomol Struct Dyn 2024; 42:7600-7609. [PMID: 37505058 DOI: 10.1080/07391102.2023.2240421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Zeta chain-associated protein kinase 70 (ZAP-70) is a non-receptor tyrosine kinase that interacts with the activated T-cell receptor to transduce downstream signals, and thus plays an important role in the adaptive immune system. The biphosphorylated immunotyrosine-based activation motifs (ITAM-Y2P) binds to the N-SH2 and C-SH2 domains of ZAP-70 to promote the activation of ZAP-70. The present study explores molecular mechanisms of allosteric inactivation of ZAP-70 induced by the hot spot W165C mutation through atomically detailed molecular dynamics simulation approaches. We report microsecond-length simulations of two states of the tandem SH2 domains of ZAP-70 in complex with the ITAM-Y2P motif, including the wild-type and W165C mutant. Extensive analysis of local flexibility and dynamical correlated motions show that W165C mutation changes coupled motions of protein domains and community networks. The binding affinities of the ITAM-Y2P motif to the wild-type and W165C mutant of ZAP-70 are predicted using binding free energy calculations. The results suggest that the driving force to decrease the binding affinity in the W165C mutant derives from the difference in the protein-protein electrostatic interactions. Moreover, the per-residue free energy decomposition unravels that the contributions from residues in the phosphorylated Tyr315 (pY315) binding site, in particular pY315 of ITAM-Y2P, and Arg43, Tyr240 of ZAP-70, are the key determinants for the loss of binding affinity. This study may insights into our understanding of the pathological mechanism of ZAP-70.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ming-Tai Hu
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Cong Ma
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing-Han Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Qing Jiang
- Department of Biliary Tract Surgery I, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Da-Qing Yang
- Department of General Surgery, The Second Affiliated Hospital of Shanghai University (Wenzhou Central Hospital), Wenzhou, Zhejiang, China
| | - Jian-Yang Ao
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Clark S, Jeong H, Posert R, Goehring A, Gouaux E. The structure of the Caenorhabditis elegans TMC-2 complex suggests roles of lipid-mediated subunit contacts in mechanosensory transduction. Proc Natl Acad Sci U S A 2024; 121:e2314096121. [PMID: 38354260 PMCID: PMC10895266 DOI: 10.1073/pnas.2314096121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Mechanotransduction is the process by which a mechanical force, such as touch, is converted into an electrical signal. Transmembrane channel-like (TMC) proteins are an evolutionarily conserved family of membrane proteins whose function has been linked to a variety of mechanosensory processes, including hearing and balance sensation in vertebrates and locomotion in Drosophila. TMC1 and TMC2 are components of ion channel complexes, but the molecular features that tune these complexes to diverse mechanical stimuli are unknown. Caenorhabditis elegans express two TMC homologs, TMC-1 and TMC-2, both of which are the likely pore-forming subunits of mechanosensitive ion channels but differ in their expression pattern and functional role in the worm. Here, we present the single-particle cryo-electron microscopy structure of the native TMC-2 complex isolated from C. elegans. The complex is composed of two copies of the pore-forming TMC-2 subunit, the calcium and integrin binding protein CALM-1 and the transmembrane inner ear protein TMIE. Comparison of the TMC-2 complex to the recently published cryo-EM structure of the C. elegans TMC-1 complex highlights conserved protein-lipid interactions, as well as a π-helical structural motif in the pore-forming helices, that together suggest a mechanism for TMC-mediated mechanosensory transduction.
Collapse
Affiliation(s)
- Sarah Clark
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
| | - Hanbin Jeong
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
| | - Rich Posert
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
| | - April Goehring
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
- HHMI, Oregon Health and Science University, Portland, OR97239
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
- HHMI, Oregon Health and Science University, Portland, OR97239
| |
Collapse
|
9
|
Zhang Y, Yin XL, Ji M, Chen Y, Chai Z. Decoupling the dynamic mechanism revealed by FGFR2 mutation-induced population shift. J Biomol Struct Dyn 2024; 42:1940-1951. [PMID: 37254996 DOI: 10.1080/07391102.2023.2217924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
The fibroblast growth factor receptor 2 (FGFR2) is a key component in cellular signaling networks, and its dysfunctional activation has been implicated in various diseases including cancer and developmental disorders. Mutations at the activation loop (A-loop) have been suggested to trigger an increased basal kinase activity. However, the molecular mechanism underlying this highly dynamic process has not been fully understood due to the limitation of static structural information. Here, we conducted multiple, large-scale Gaussian accelerated molecular dynamics simulations of five (K659E, K659N, K659M, K659Q, and K659T) FGFR2 mutants at the A-loop, and comprehensively analyzed the dynamic molecular basis of FGFR2 activation. The results quantified the population shift of each system, revealing that all mutants had a higher proportion of active-like states. Using Markov state models, we extracted the representative structure of different conformational states and identified key residues related to the increased kinase activity. Furthermore, community network analysis showed enhanced information connections in the mutants, highlighting the long-range allosteric communication between the A-loop and the hinge region. Our findings may provide insights into the dynamic mechanism for FGFR2 dysfunctional activation and allosteric drug discovery.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Lan Yin
- Department of Radiotherapy, Shanghai 411 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Shanghai, China
| | - Mingfei Ji
- Department of Urology, The Second Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Yi Chen
- Department of Ultrasound interventional, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Zongtao Chai
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hepatic Surgery, Shanghai Geriatric Medical Center, Shanghai, China
| |
Collapse
|
10
|
Zhang M, Lan X, Li X, Lu S. Pharmacologically targeting intracellular allosteric sites of GPCRs for drug discovery. Drug Discov Today 2023; 28:103803. [PMID: 37852356 DOI: 10.1016/j.drudis.2023.103803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
G-protein-coupled receptors (GPCRs) are a family of cell surface proteins that can sense a variety of extracellular stimuli and mediate multiple signaling transduction pathways involved in human physiology. Recent advances in GPCR structural biology have revealed a relatively conserved intracellular allosteric site in multiple GPCRs, which can be utilized to modulate receptors from the inside. This novel intracellular site partially overlaps with the G-protein and β-arrestin coupling sites, providing a novel avenue for biological intervention. Here, we review evidence available for GPCR structures complexed with intracellular small-molecule allosteric modulators, elucidating drug-target interactions and allosteric mechanisms. Moreover, we highlight the potential of intracellular allosteric modulators in achieving biased signaling, which provides insights into biased allosteric mechanisms.
Collapse
Affiliation(s)
- Mingyang Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaobing Lan
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| | - Shaoyong Lu
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
11
|
Zhang X, Liang W, Zheng G, Li B. Decoding the deactivation mechanism of R192W mutation of ZAP-70 using molecular dynamics simulations and binding free energy calculations. J Mol Model 2023; 29:371. [PMID: 37953318 DOI: 10.1007/s00894-023-05771-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
CONTEXT ZAP-70 (zeta-chain-associated protein of 70 kDa), serving as a critical regulator for T cell antigen receptor signaling, represents an attractive therapeutic target for autoimmunity disease. How the mechanistical mechanism of ZAP-70 to a human autoimmune syndrome-associated R192W mutation remains unclear. The results indicated that the R192W mutation of ZAP-70 clearly affected the conformational flexibility of the N-terminal ITAM-Y2P. Structural analysis unveiled that the R192W mutation of ZAP-70 caused the exposure of the N-terminal ITAM-Y2P to the solvent. MM-GBSA binding free energy calculations exhibited that the R192W mutation decreased the binding affinity of ITAM-Y2P to the ZAP-70 mutant. Residue-based free energy decomposition further revealed that the protein-peptide interaction networks involving electrostatic interactions provide significant contributions for complex formation. The energy unfavorable residues include Arg43, Arg192, Tyr240, and Lys244 from ZAP-70 and Asn301, Leu303, pY304, and pY315 from ITAM-Y2P in the R192W mutant. Our obtained results may help the understanding of the deactivation mechanism of ZAP-70 induced by the R192W mutation. METHODS In the work, multiple replica molecular dynamics simulations and molecular mechanics-generalized Born surface area (MM-GBSA) method were performed to reveal the doubly phosphorylated ITAMs (ITAM-Y2P)-mediated deactivation mechanism of ZAP-70 induced by the R192W mutation.
Collapse
Affiliation(s)
- Xuehua Zhang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Wenqi Liang
- Department of Emergency, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Guodong Zheng
- Department of VIP Clinic, Changhai Hospital, The First Affiliated Hospital to Naval Medical University, Shanghai, 200433, China.
| | - Bei Li
- Department of VIP Clinic, Changhai Hospital, The First Affiliated Hospital to Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
12
|
Cheng J, Yin X, Wang L, Liu X, Yang F, Zhang L, Liu T. Decoding molecular mechanism of species-selective targeting of fungal versus human HSP90 using multiple replica molecular dynamics simulations and binding free energy calculations. J Biomol Struct Dyn 2023; 42:12478-12488. [PMID: 37850420 DOI: 10.1080/07391102.2023.2270687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
As a highly evolutionarily conserved molecular chaperone, heat shock protein (HSP90), plays an important role in virulence traits, representing a therapeutic target for the treatment of fungal infections. The close evolutionary relationship between fungi and their human hosts poses a key challenge for the development of selective antifungal agents. In this work, molecular docking, multiple replica microsecond-based molecular dynamics (MD) simulations, and binding free energy calculations were performed to decode molecular mechanism of species-selective targeting of fungal versus human HSP90 triggered by the compound A11. MD simulations reveal that binding of compound A11 to human HSP90 nucleotide-binding domain (NBD) leads to obvious conformational changes relative to fungal HSP90 NBD. Binding free energy calculations show that the binding of compound A11 to fungal HSP90 NBD is stronger than that to human HSP90 NBD. Per residue-based free energy decomposition analysis was used to evaluate the inhibitor - residue interaction profile. The results efficiently identify the hot spot residues that play vital roles in favorable binding of compound A11 to fungal HSP90 NBD. This study is expected to provide a useful guidance for the development of selective inhibitors toward fungal HSP90.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jinying Cheng
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xue Yin
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lulu Wang
- Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xianxian Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fang Yang
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Liguo Zhang
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Tonggang Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
13
|
Lu X, Shi X, Fan J, Li M, Zhang Y, Lu S, Xu G, Chen Z. Mechanistic Elucidation of Activation/Deactivation Signal Transduction within Neurotensin Receptor 1 Triggered by 'Driver Chemical Groups' of Modulators: A Comparative Molecular Dynamics Simulation. Pharmaceutics 2023; 15:2000. [PMID: 37514186 PMCID: PMC10385606 DOI: 10.3390/pharmaceutics15072000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Small-molecule modulators of neurotensin receptor 1 (NTSR1), a class A G-protein-coupled receptor (GPCR), has emerged as promising therapeutic agent for psychiatric disorders and cancer. Interestingly, a chemical group substitution in NTSR1 modulators can launch different types of downstream regulation, highlighting the significance of deciphering the internal fine-tuning mechanism. Here, we conducted a synergistic application of a Gaussian accelerated molecular dynamics simulation, a conventional molecular dynamics simulation, and Markov state models (MSM) to investigate the underlying mechanism of 'driver chemical groups' of modulators triggering inverse signaling. The results indicated that the flexibility of the leucine moiety in NTSR1 agonists contributes to the inward displacement of TM7 through a loosely coupled allosteric pathway, while the rigidity of the adamantane moiety in NTSR1 antagonists leads to unfavorable downward transduction of agonistic signaling. Furthermore, we found that R3226.54, Y3196.51, F3537.42, R1483.32, S3567.45, and S3577.46 may play a key role in inducing the activation of NTSR1. Together, our findings not only highlight the ingenious signal transduction within class A GPCRs but also lay a foundation for the development of targeted drugs harboring different regulatory functions of NTSR1.
Collapse
Affiliation(s)
- Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinchao Shi
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jigang Fan
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingyu Li
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuxiang Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guanghuan Xu
- Department of VIP Clinic, Changhai Hospital, Affiliated to Navy Medical University, Shanghai 200433, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai 200433, China
| |
Collapse
|
14
|
Decoding the Conformational Selective Mechanism of FGFR Isoforms: A Comparative Molecular Dynamics Simulation. Molecules 2023; 28:molecules28062709. [PMID: 36985681 PMCID: PMC10052029 DOI: 10.3390/molecules28062709] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) play critical roles in the regulation of cell growth, differentiation, and proliferation. Specifically, FGFR2 gene amplification has been implicated in gastric and breast cancer. Pan-FGFR inhibitors often cause large toxic side effects, and the highly conserved ATP-binding pocket in the FGFR1/2/3 isoforms poses an immense challenge in designing selective FGFR2 inhibitors. Recently, an indazole-based inhibitor has been discovered that can selectively target FGFR2. However, the detailed mechanism involved in selective inhibition remains to be clarified. To this end, we performed extensive molecular dynamics simulations of the apo and inhibitor-bound systems along with multiple analyses, including Markov state models, principal component analysis, a cross-correlation matrix, binding free energy calculation, and community network analysis. Our results indicated that inhibitor binding induced the phosphate-binding loop (P-loop) of FGFR2 to switch from the open to the closed conformation. This effect enhanced extensive hydrophobic FGFR2-inhibitor contacts, contributing to inhibitor selectivity. Moreover, the key conformational intermediate states, dynamics, and driving forces of this transformation were uncovered. Overall, these findings not only provided a structural basis for understanding the closed P-loop conformation for therapeutic potential but also shed light on the design of selective inhibitors for treating specific types of cancer.
Collapse
|