1
|
Liu M, Liu C, Zhaxi P, Kou X, Liu Y, Xue Z. Research Progress on Hypoglycemic Effects and Molecular Mechanisms of Flavonoids: A Review. Antioxidants (Basel) 2025; 14:378. [PMID: 40298635 DOI: 10.3390/antiox14040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
As a prevalent metabolic disorder, the increasing incidence of diabetes imposes a significant burden on global healthcare. Flavonoids in natural phytochemical products exhibit notable hypoglycemic properties, making them potential alternatives for diabetes treatment. This article summarizes the hypoglycemic properties of flavonoid subcategories studied in recent years, including flavones, isoflavones, flavonols, flavanols, and others. The relevant targets and signal pathways, such as α-amylase, α-glucosidase, insulin receptor substrate (IRS)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), PKR-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2α (eIF2α)/activation transcription factor 4 (ATF4)/C/EBP homologous protein (CHOP), etc., are also elaborated. Additionally, flavonoids have also been demonstrated to modulate the gut microbiota and its metabolites. Through the aforementioned mechanisms, flavonoids mainly suppress carbohydrate metabolism and gluconeogenesis; facilitate glucose uptake, glycogenesis, and insulin secretion; and mitigate insulin resistance, oxidative stress, inflammation, etc. Notably, several studies have indicated that certain flavonoids displayed synergistic hypoglycemic effects. In conclusion, this article provides a comprehensive review of the hypoglycemic effects of the flavonoids investigated in recent years, aiming to offer theoretical insights for their further exploration.
Collapse
Affiliation(s)
- Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Longsheng Biotechnology Co., Ltd., Tianjin 300450, China
| | - Chunlong Liu
- Tianjin Longsheng Biotechnology Co., Ltd., Tianjin 300450, China
| | - Puba Zhaxi
- Key Laboratory of Functional Food and Food Quality and Safety, Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850099, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yazhou Liu
- Key Laboratory of Functional Food and Food Quality and Safety, Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850099, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Li M, Wang Y, Chen Y, Dong L, Liu J, Dong Y, Yang Q, Cai W, Li Q, Peng B, Li Y, Weng X, Wang Y, Zhu X, Gong Z, Chen Y. A comprehensive review on pharmacokinetic mechanism of herb-herb/drug interactions in Chinese herbal formula. Pharmacol Ther 2024; 264:108728. [PMID: 39389315 DOI: 10.1016/j.pharmthera.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Oral administration of Chinese Herbal Medicine (CHM) faces various challenges in reaching the target organs including absorption and conversion in the gastrointestinal tract, hepatic metabolism via the portal vein, and eventual systemic circulation. During this process, factors such as gut microbes, physical or chemical barriers, metabolic enzymes, and transporters play crucial roles. Particularly, interactions between different herbs in CHM have been observed both in vitro and in vivo. In vitro, interactions typically manifest as detectable physical or chemical changes, such as facilitating solubilization or producing precipitates when decoctions of multiple herbs are administered. In vivo, such interactions cause alterations in the ADME (absorption, distribution, metabolism, and excretion) profile on metabolic enzymes or transporters in the body, leading to competition, antagonism, inhibition, or activation. These interactions ultimately contribute to differences in the therapeutic and pharmacological effects of multi-herb formulas in CHM. Over the past two thousand years, China has cultivated profound expertise and solid theoretical frameworks over the scientific use of herbs. The combination of multiple herbs in one decoction has been frequently employed to synergistically enhance therapeutic efficacy or mitigate toxic and side effects in clinical settings. Additionally combining herbs with increased toxicity or decreased effect is also regarded as a remedy, a practice that should be approached with caution according to Traditional Chinese Medicine (TCM) physicians. Such historical records and practices serve as a foundation for predicting favorable multi-herb combinations and their potential risks. However, systematic data that are available to support the clinical practice and the exploration of novel herbal formulas remain limited. Therefore, this review aims to summarize the pharmacokinetic interactions and mechanisms of herb-herb or herb-drug combinations from existing works, and to offer guidance as well as evidence for optimizing CHM and developing new medicines with CHM characteristics.
Collapse
Affiliation(s)
- Mengting Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Lijinchuan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jieyuan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Dong
- Guang'an men hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Ji XL, Xiao YN, Sun RM, Tan ZW, Zhu YQ, Li XL, Li LF, Hou SY. Identification and characterization of Lacticaseibacillus rhamnosus HP-B1083-derived β-glucuronidase and its application for baicalin biotransformation. Heliyon 2024; 10:e38028. [PMID: 39323839 PMCID: PMC11422588 DOI: 10.1016/j.heliyon.2024.e38028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Baicalein, showing higher bioavailability and stronger pharmacological activity, can be obtained via a β-glucuronidase (GUS)-catalyzed transformation of baicalein 7-O-β-D-glucuronide (baicalin). Recently, we have found that the fermentation broth of Lacticaseibacillus rhamnosus HP-B1083 can efficiently convert baicalin to baicalein. In this study, the L. rhamnosus HP-B1083-derived enzyme involved in baicalin biotransformation was identified and characterized. First, the LruidA gene, encoding the responsible enzyme, was cloned and sequenced. Sequence analysis revealed that the deduced enzyme (designated as LrUidA) belonged to the glycosyl hydrolase family 2. The recombinant LrUidA was expressed and purified for characterization. LrUidA had a molecular weight of 70 kDa, with an optimal temperature of 50 °C and pH 4.5. Although LrUidA was susceptible to temperature, it possessed a relative pH stability. Its Michaelis-Menten constant, maximum reaction velocity and catalytic constant values were 9.710 mM, 13.08 mM/min/mg, and 14.95 s-1, respectively. Site-directed mutagenesis experiment results demonstrated that the enzyme reaction uses side chains of E509 and E415 to hydrolyze the glycosidic bond of baicalin and involves three negatively charged residues, E450, D451, and D452, respectively. Surprisingly, biotransformation was performed under optimized reaction conditions by incubating the purified enzyme with 0.1 % baicalin for 4 h, resulting in a considerable conversion ratio of 99 %. Altogether, our findings provide insights into the properties of L. rhamnosus HP-B1083-derived enzyme and expand our understanding regarding using GUS for the industrial production of baicalein.
Collapse
Affiliation(s)
- Xiao-Lei Ji
- Xinjiang Agricultural Vocational and Technical College, Changji, 831100, PR China
| | - Yi-Nuo Xiao
- Jining Medical University, Jining, 272000, PR China
| | - Rui-Min Sun
- College of Pharmacy, Heze University, Heze, 274015, PR China
| | - Zhi-Wen Tan
- College of Pharmacy, Heze University, Heze, 274015, PR China
| | - Ya-Qi Zhu
- College of Pharmacy, Heze University, Heze, 274015, PR China
| | - Xue-Ling Li
- College of Pharmacy, Heze University, Heze, 274015, PR China
| | - Lan-Fang Li
- College of Pharmacy, Heze University, Heze, 274015, PR China
| | - Shao-Yang Hou
- College of Pharmacy, Heze University, Heze, 274015, PR China
| |
Collapse
|
4
|
Liang YC, Li L, Liang JL, Liu DL, Chu SF, Li HL. Integrating Mendelian randomization and single-cell RNA sequencing to identify therapeutic targets of baicalin for type 2 diabetes mellitus. Front Pharmacol 2024; 15:1403943. [PMID: 39130628 PMCID: PMC11310057 DOI: 10.3389/fphar.2024.1403943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Background Alternative and complementary therapies play an imperative role in the clinical management of Type 2 diabetes mellitus (T2DM), and exploring and utilizing natural products from a genetic perspective may yield novel insights into the mechanisms and interventions of the disorder. Methods To identify the therapeutic target of baicalin for T2DM, we conducted a Mendelian randomization study. Druggable targets of baicalin were obtained by integrating multiple databases, and target-associated cis-expression quantitative trait loci (cis-eQTL) originated from the eQTLGen consortium. Summary statistics for T2DM were derived from two independent genome-wide association studies available through the DIAGRAM Consortium (74,124 cases vs. 824,006 controls) and the FinnGen R9 repository (9,978 cases vs. 12,348 controls). Network construction and enrichment analysis were applied to the therapeutic targets of baicalin. Colocalization analysis was utilized to assess the potential for the therapeutic targets and T2DM to share causative genetic variations. Molecular docking was performed to validate the potency of baicalin. Single-cell RNA sequencing was employed to seek evidence of therapeutic targets' involvement in islet function. Results Eight baicalin-related targets proved to be significant in the discovery and validation cohorts. Genetic evidence indicated the expression of ANPEP, BECN1, HNF1A, and ST6GAL1 increased the risk of T2DM, and the expression of PGF, RXRA, SREBF1, and USP7 decreased the risk of T2DM. In particular, SREBF1 has significant interaction properties with other therapeutic targets and is supported by strong colocalization. Baicalin had favorable combination activity with eight therapeutic targets. The expression patterns of the therapeutic targets were characterized in cellular clusters of pancreatic tissues that exhibited a pseudo-temporal dependence on islet cell formation and development. Conclusion This study identified eight potential targets of baicalin for treating T2DM from a genetic perspective, contributing an innovative analytical framework for the development of natural products. We have offered fresh insights into the connections between therapeutic targets and islet cells. Further, fundamental experiments and clinical research are warranted to delve deeper into the molecular mechanisms of T2DM.
Collapse
Affiliation(s)
- Ying-Chao Liang
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ling Li
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jia-Lin Liang
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - De-Liang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Shu-Fang Chu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Hui-Lin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
5
|
Sasarom M, Wanachantararak P, Chaijareenont P, Okonogi S. Antioxidant, antiglycation, and antibacterial of copper oxide nanoparticles synthesized using Caesalpinia Sappan extract. Drug Discov Ther 2024; 18:167-177. [PMID: 38945877 DOI: 10.5582/ddt.2024.01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet successfully on the synthesis. Therefore, searching for the high potential extracts that can reduce the metal salt precursor in the synthesis reaction is essential. The present study explores the synthesis of copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract. Phytochemical analysis and determination of the total phenolic content of the extract were performed before use as a reducing agent. Under the suitable synthesized condition, a color change in the color of the solutions to brown confirmed the formation of CuONPs. The obtained CuONPs were confirmed using ultraviolet-visible spectroscopy, photon correlation spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, and Fourier transform infrared analysis. The synthesized CuONPs investigated for antioxidant, antiglycation, and antibacterial activities. CuONPs possessed antioxidant activities by quenching free radicals with an IC50 value of 63.35 µg/mL and reducing activity with an EC range of 3.19-10.27 mM/mg. CuONPs also inhibited the formation of advanced glycation end products in the bovine serum albumin/ribose model with an IC50 value of 17.05 µg/mL. In addition, CuONPs showed inhibition of human pathogens, including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, and prevention of biofilm formation and biofilm eradication, with maximum inhibition of approx. 75%. Our findings suggest that C. sappan extract can be used to obtain highly bioactive CuONPs for the development of certain medical devices and therapeutic agents.
Collapse
Affiliation(s)
- Mathurada Sasarom
- PhD Degree Program in Pharmacy, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | | - Pisaisit Chaijareenont
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Rauf A, Rashid U, Shah ZA, Khalil AA, Shah M, Tufail T, Rehman G, Rahman A, Naz S, Alsahammari A, Alharbi M, Al-Shahrani A, Formanowicz D. Anti-inflammatory and anti-diabetic properties of indanone derivative isolated from Fernandoa adenophylla in vitro and in silico studies. Sci Rep 2024; 14:9624. [PMID: 38671030 PMCID: PMC11053151 DOI: 10.1038/s41598-024-59703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Fernandoa adenophylla, due to the presence of phytochemicals, has various beneficial properties and is used in folk medicine to treat many conditions. This study aimed to isolate indanone derivative from F. adenophylla root heartwood and assess in-vitro anti-inflammatory and anti-diabetic characteristics at varying concentrations. Heat-induced hemolysis and glucose uptake by yeast cells assays were conducted to evaluate these properties. Besides, docking analyses were performed on four molecular targets. These studies were combined with molecular dynamics simulations to elucidate the time-evolving inhibitory effect of selected inhibitors within the active pockets of the target proteins (COX-1 and COX-2). Indanone derivative (10-100 µM) inhibited the lysis of human red blood cells from 9.12 ± 0.75 to 72.82 ± 4.36% and, at 5-100 µM concentrations, it significantly increased the yeast cells' glucose uptake (5.16 ± 1.28% to 76.59 ± 1.62%). Concluding, the isolated indanone might act as an anti-diabetic agent by interacting with critical amino acid residues of 5' adenosine monophosphate-activated protein kinase (AMPK), and it showed a binding affinity with anti-inflammatory targets COX-1, COX-2, and TNF-α. Besides, the obtained results may help to consider the indanone derivative isolated from F. adenophylla as a promising candidate for drug delivery, subject to outcomes of further in vivo and clinical studies.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad, 22060, Pakistan
| | - Zafar Ali Shah
- Department of Agricultural Chemistry and Biochemistry, The University of Agriculture, Peshawar, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Punjab, Pakistan
| | - Muhammad Shah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad, 22060, Pakistan
| | - Tabussam Tufail
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Punjab, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa (KP), Pakistan
| | - Abdur Rahman
- Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa (KP), Pakistan
| | - Saima Naz
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa (KP), Pakistan
| | - Abdulrahman Alsahammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdulmajeed Al-Shahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
- Laboratory Department, Almadah General Hospital, Ministry of Health, Khamis Mushait, Saudi Arabia
| | - Dorota Formanowicz
- Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806, Poznan, Poland.
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Kolejowa 2, 62-064, Plewiska, Poland.
| |
Collapse
|
7
|
Durmaz L, Karagecili H, Gulcin İ. Evaluation of Carbonic Anhydrase, Acetylcholinesterase, Butyrylcholinesterase, and α-Glycosidase Inhibition Effects and Antioxidant Activity of Baicalin Hydrate. Life (Basel) 2023; 13:2136. [PMID: 38004276 PMCID: PMC10672269 DOI: 10.3390/life13112136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Baicalin is the foremost prevalent flavonoid found in Scutellaria baicalensis. It also frequently occurs in many multi-herbal preparations utilized in Eastern countries. The current research has assessed and compared the antioxidant, antidiabetic, anticholinergic, and antiglaucoma properties of baicalin hydrate. Baicalin hydrate was tested for its antioxidant capacity using a variety of techniques, including N,N-dimethyl-p-phenylenediamine dihydrochloride radical (DMPD•+) scavenging activity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+) scavenging activity, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) scavenging activity, potassium ferric cyanide reduction ability, and cupric ions (Cu2+) reducing activities. Also, for comparative purposes, reference antioxidants, such as butylated hydroxyanisole (BHA), Trolox, α-Tocopherol, and butylated hydroxytoluene (BHT) were employed. Baicalin hydrate had an IC50 value of 13.40 μg/mL (r2: 0.9940) for DPPH radical scavenging, whereas BHA, BHT, Trolox, and α-Tocopherol had IC50 values of 10.10, 25.95, 7.059, and 11.31 μg/mL for DPPH• scavenging, respectively. These findings showed that baicalin hydrate had comparably close and similar DPPH• scavenging capability to BHA, α-tocopherol, and Trolox, but it performed better than BHT. Additionally, apart from these studies, baicalin hydrate was tested for its ability to inhibit a number of metabolic enzymes, including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase II (CA II), and α-glycosidase, which have been linked to several serious illnesses, such as Alzheimer's disease (AD), glaucoma, and diabetes, where the Ki values of baicalin hydrate toward the aforementioned enzymes were 10.01 ± 2.86, 3.50 ± 0.68, 19.25 ± 1.79, and 26.98 ± 9.91 nM, respectively.
Collapse
Affiliation(s)
- Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, Erzincan 24500, Türkiye;
| | - Hasan Karagecili
- Department of Nursing, Faculty of Health Sciences, Siirt University, Siirt 56100, Türkiye;
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Türkiye
| |
Collapse
|
8
|
Djeujo FM, Stablum V, Pangrazzi E, Ragazzi E, Froldi G. Luteolin and Vernodalol as Bioactive Compounds of Leaf and Root Vernonia amygdalina Extracts: Effects on α-Glucosidase, Glycation, ROS, Cell Viability, and In Silico ADMET Parameters. Pharmaceutics 2023; 15:pharmaceutics15051541. [PMID: 37242783 DOI: 10.3390/pharmaceutics15051541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The aqueous decoctions of Vernonia amygdalina (VA) leaves and roots are widely used in traditional African medicine as an antidiabetic remedy. The amount of luteolin and vernodalol in leaf and root extracts was detected, and their role was studied regarding α-glucosidase activity, bovine serum albumin glycation (BSA), reactive oxygen species (ROS) formation, and cell viability, together with in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Vernodalol did not affect α-glucosidase activity, whereas luteolin did. Furthermore, luteolin inhibited the formation of advanced glycation end products (AGEs) in a concentration-dependent manner, whereas vernodalol did not reduce it. Additionally, luteolin exhibited high antiradical activity, while vernodalol demonstrated a lower scavenger effect, although similar to that of ascorbic acid. Both luteolin and vernodalol inhibited HT-29 cell viability, showing a half-maximum inhibitory concentration (IC50) of 22.2 µM (-Log IC50 = 4.65 ± 0.05) and 5.7 µM (-Log IC50 = 5.24 ± 0.16), respectively. Finally, an in silico ADMET study showed that both compounds are suitable candidates as drugs, with appropriate pharmacokinetics. This research underlines for the first time the greater presence of vernodalol in VA roots compared to leaves, while luteolin is prevalent in the latter, suggesting that the former could be used as a natural source of vernodalol. Consequently, root extracts could be proposed for vernodalol-dependent antiproliferative activity, while leaf extracts could be suggested for luteolin-dependent effects, such as antioxidant and antidiabetic effects.
Collapse
Affiliation(s)
| | - Valentina Stablum
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Elisa Pangrazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
9
|
Froldi G, Ragazzi E. Selected Plant-Derived Polyphenols as Potential Therapeutic Agents for Peripheral Artery Disease: Molecular Mechanisms, Efficacy and Safety. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207110. [PMID: 36296702 PMCID: PMC9611444 DOI: 10.3390/molecules27207110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Vascular diseases, such as peripheral artery disease (PAD), are associated with diabetes mellitus and a higher risk of cardiovascular disease and even death. Surgical revascularization and pharmacological treatments (mainly antiplatelet, lipid-lowering drugs, and antidiabetic agents) have some effectiveness, but the response and efficacy of therapy are overly dependent on the patient’s conditions. Thus, the demand for new cures exists. In this regard, new studies on natural polyphenols that act on key points involved in the pathogenesis of vascular diseases and, thus, on PAD are of great urgency. The purpose of this review is to take into account the mechanisms that lead to endothelium dysfunction, such as the glycoxidation process and the production of advanced glycation end-products (AGEs) that result in protein misfolding, and to suggest plant-derived polyphenols that could be useful in PAD. Thus, five polyphenols are considered, baicalein, curcumin, mangiferin, quercetin and resveratrol, reviewing the literature in PubMed. The key molecular mechanisms and preclinical and clinical studies of each selected compound are examined. Furthermore, the safety profiles of the polyphenols are outlined, together with the unwanted effects reported in humans, also by searching the WHO database (VigiBase).
Collapse
|