1
|
Tong Y, Guo J, Li F, Lai KP, Mo J. Antibiotic erythromycin in fish: Pharmacokinetics, effects, and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126203. [PMID: 40187523 DOI: 10.1016/j.envpol.2025.126203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Erythromycin is a macrolide antibiotic commonly utilized in veterinary medicine and aquaculture. It functions by binding to the 50S subunit of 70S ribosomes, inhibiting protein synthesis and effectively treating numerous bacterial diseases. Due to the extensive use of erythromycin, it has been detected in various aquatic systems in recent years. Multiple studies have reported the occurrence of erythromycin resistance and its adverse effects on diverse aquatic organisms. Consequently, potential environmental health risks associated with erythromycin have garnered increasing attention. As an integral component of aquatic ecosystems, fish have been the subject of numerous reports regarding the bioaccumulation and adverse effects of erythromycin; however, these data have not been collated and interpreted. This report provides a comprehensive overview of the environmental fate of erythromycin, detection methods, pharmacokinetics, and impacts on fish. In addition to the therapeutic benefits against pathogens, acute or chronic exposure of fish to erythromycin at concentrations ranging from μg/L to mg/L disrupts the primary defense, antioxidant, and xenobiotic metabolism systems, leading to oxidative stress, cellular structural damage, and metabolic disorders, manifesting as cytotoxicity, organ toxicity, neurotoxicity, developmental toxicity, and reproductive toxicity. However, further in-depth studies are warranted to evaluate the therapeutic efficacy at relatively high levels, particularly when considering pathogens with developed resistance to erythromycin, as well as the long-term effects of erythromycin exposure at environmentally relevant concentrations in fish, thereby better assessing the health risks posed by erythromycin to fish and their consumers humans.
Collapse
Affiliation(s)
- Yongqi Tong
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Keng Po Lai
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong Special Administrative Region of China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China.
| |
Collapse
|
2
|
Zhang JM, Yuan GY, Zou Y. Enzymatic ester bond formation strategies in fungal macrolide skeletons. Nat Prod Rep 2025; 42:298-323. [PMID: 39831437 DOI: 10.1039/d4np00050a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Covering: up to August 2024Macrolides, the core skeletons of numerous marketed drugs and bioactive natural products, have garnered considerable scientific interest owing to their structural diversity and broad spectrum of pharmaceutical activities. The formation of intramolecular ester bonds is a critical biocatalytic step in constructing macrolide skeletons. Here, we summarised enzymatic ester bond formation strategies in fungal polyketide (PK)-type, nonribosomal peptide (NRP)-type, and PK-NRP hybrid-type macrolides. In PK-type macrolides, ester bond formation is commonly catalysed by a trans-acting thioesterase (TE) or a cis-acting TE domain during the product release process. In NRP-type and PK-NRP hybrid-type macrolides, the ester bond is usually introduced through condensation (C) domain-catalysed esterification during the elongation or product release step. Although the TE and C domains share similarities in their catalytic mechanism, using hydroxyl groups as nucleophiles in an intramolecular nucleophilic attack, they differ in terms of the hydroxyl origin, the timing of ester bond formation, and domain location. Furthermore, some TE domains are utilized as chemoenzymatic catalysts to construct macrolides with different ring sizes. A comparison of ester bond formation between fungi and bacteria is also discussed. Exploring the biosynthetic pathways of fungal macrolides, elucidating the diverse strategies employed in the formation of ester bonds, and understanding the application of enzymes/domains in chemoenzymatic synthesis hold promise for the discovery of new bioactive macrolides in the future.
Collapse
Affiliation(s)
- Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
| | - Guan-Yin Yuan
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.
| |
Collapse
|
3
|
Mooney E, Twamley B, Cooke G, Caraher E, Tacke M, Kelleher F, Creaven BS. Heteroleptic Coumarin-Based Silver(I) Complexes: Possible New Antimicrobial Agents. Molecules 2024; 29:5917. [PMID: 39770006 PMCID: PMC11678713 DOI: 10.3390/molecules29245917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/04/2025] Open
Abstract
Heteroleptic coumarin-based silver(I) complexes with improved solubility profiles were synthesised using either triphenylphosphine or an N-heterocyclic carbene as adduct ligands, and were fully characterised using IR and NMR spectroscopy, elemental analysis, and, where possible, X-ray crystallography. The triphenylphosphine adducts formed well-resolved structures, where the oxyacetate ligands asymmetrically chelated the silver(I) ion in a bidentate chelating mode, and the silver(I) ion was also bound to two triphenylphosphine ligands. The solubility profile and photostability of the adducts were considerably improved compared to those of previously isolated simple coumarin silver(I) complexes. Analysis of the coumarin N-heterocyclic carbene(NHC) silver(I) adduct indicated that it likely formed as a complex aggregate species with an overall stoichiometry of 1:1:1 coumarin:Ag(I):NHC. The Kirby Bauer assay and broth microdilution assays were used to assess the silver(I) complexes' and adducts' antimicrobial activity against pathogenic strains of Pseudomonas aeruginosa, Escherichia coli, and MRSA. Interestingly, the formation of more soluble complexes did not increase the activity of the silver(I) complexes and, in effect, made them less effective antimicrobial agents, particularly against Escherichia coli and Pseudomonas aeruginosa, although they retained their activity against MRSA.
Collapse
Affiliation(s)
- Erika Mooney
- School of Chemical and BioPharmaceutical Sciences, Technological University Dublin, TU Dublin, Tallaght Campus, D24 FKT9 Dublin, Ireland; (E.M.); (G.C.)
- Centre for AMR and One Health Research, Technological University Dublin, TU Dublin, Tallaght Campus, D24 FKT9 Dublin, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Gordon Cooke
- School of Chemical and BioPharmaceutical Sciences, Technological University Dublin, TU Dublin, Tallaght Campus, D24 FKT9 Dublin, Ireland; (E.M.); (G.C.)
- Centre for AMR and One Health Research, Technological University Dublin, TU Dublin, Tallaght Campus, D24 FKT9 Dublin, Ireland
| | - Emma Caraher
- School of Chemical and BioPharmaceutical Sciences, Technological University Dublin, TU Dublin, Tallaght Campus, D24 FKT9 Dublin, Ireland; (E.M.); (G.C.)
- Centre for AMR and One Health Research, Technological University Dublin, TU Dublin, Tallaght Campus, D24 FKT9 Dublin, Ireland
| | - Matthias Tacke
- UCD School of Chemistry, Science Centre South, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Fintan Kelleher
- School of Chemical and BioPharmaceutical Sciences, Technological University Dublin, TU Dublin, Tallaght Campus, D24 FKT9 Dublin, Ireland; (E.M.); (G.C.)
- Centre for AMR and One Health Research, Technological University Dublin, TU Dublin, Tallaght Campus, D24 FKT9 Dublin, Ireland
| | - Bernadette S. Creaven
- Centre for AMR and One Health Research, Technological University Dublin, TU Dublin, Tallaght Campus, D24 FKT9 Dublin, Ireland
- School of Chemical and BioPharmaceutical Sciences, Technological University Dublin, Central Quad Building, Grangegorman, D07 ADY7 Dublin, Ireland
| |
Collapse
|
4
|
Zhong L, Tan X, Yang W, Li P, Ye L, Luo Q, Hou H. Bioactive matters based on natural product for cardiovascular diseases. SMART MATERIALS IN MEDICINE 2024; 5:542-565. [DOI: 10.1016/j.smaim.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Xu T, Na J, Liu Q, Kuang G, Zhang Q, Zhao Y. The function of albumin and its application in tumor therapy. MATERIALS TODAY COMMUNICATIONS 2024; 41:110575. [DOI: 10.1016/j.mtcomm.2024.110575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Musuc AM. Cyclodextrins: Advances in Chemistry, Toxicology, and Multifaceted Applications. Molecules 2024; 29:5319. [PMID: 39598708 PMCID: PMC11596893 DOI: 10.3390/molecules29225319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Cyclodextrins (CDs) have garnered significant attention in various scientific and industrial fields due to their unique ability to form inclusion complexes with a wide range of guest molecules. This review comprehensively explores the latest advancements in cyclodextrin chemistry, focusing on the synthesis and characterization of cyclodextrin derivatives and their inclusion complexes. This review examines the biological activities of cyclodextrins, highlighting their pharmacological properties and pharmacokinetics, and discussing their promising applications in drug delivery systems. Furthermore, the industrial utilization of cyclodextrins, including their role in nanomaterials and nanostructured coatings, as well as their potential in environmental remediation, are explored. The present research also addresses the critical aspect of toxicity, particularly concerning cyclodextrin inclusion complexes, providing an overview of the current understanding and safety considerations. Through a multidisciplinary approach, the aim is to present a complete view of cyclodextrins, underscoring their versatility and impact across various domains.
Collapse
Affiliation(s)
- Adina Magdalena Musuc
- Institute of Physical Chemistry-Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
7
|
Mayattu K, Rajwade J, Ghormade V. Development of erythromycin loaded PLGA nanoparticles for improved drug efficacy and sustained release against bacterial infections and biofilm formation. Microb Pathog 2024; 197:107083. [PMID: 39454804 DOI: 10.1016/j.micpath.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Bacterial infections are a common cause of sepsis, often leading to high patient mortality. Such infections are challenging to treat due to bacterial resistance to many existing drugs. Erythromycin (Ery) is a macrolide antibiotic used against bacterial infections with reported resistance. Recently, synthetic poly-lactide co-glycolic acid (PLGA) polymer nanoparticles (NPs) have displayed improved drug delivery characteristics and biocompatibility. In this study, PLGA-Ery NPs were synthesized by the o/w emulsion diffusion method, having a particle size of 159 ± 23 nm and displayed 71.89 % of encapsulation efficiency. The PLGA-Ery NPs showed 1.5, 2.1 and 1.5-fold improved MIC and antibacterial efficacy against E. coli, S. aureus, and P. aeruginosa, respectively than the pure drug. As illustrated by scanning electron microscopy, PLGA-Ery NPs caused damage to the bacterial cell walls. Furthermore, a surface coating with PLGA-Ery NPs on a glass surface showed efficient inhibition (>90 %) of the biofilm formation by P. aeruginosa, as determined by fluorescence microscopy and MTT assay. This study demonstrates that PLGA-Ery NPs can increase the efficiency of erythromycin and can suppress the growth and biofilm formation of P. aeruginosa. Such polymeric nanoparticles drug nanoformulations have potential as an antimicrobial and as a surface coating for medical devices.
Collapse
Affiliation(s)
- Kamal Mayattu
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune, 411004, India
| | - Jyutika Rajwade
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune, 411004, India
| | - Vandana Ghormade
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune, 411004, India.
| |
Collapse
|
8
|
Zhang X, Zhang F, Li C, Li J, Xu X, Zhu T, Che Q, Li D, Zhang G. Heterologous Expression of Type II PKS Gene Cluster Leads to Diversified Angucyclines in Streptomyces albus J1074. Mar Drugs 2024; 22:480. [PMID: 39590760 PMCID: PMC11595736 DOI: 10.3390/md22110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Heterologous expression has emerged as an effective strategy in activating Streptomyces cryptic gene clusters or improving yield. Eight compounds were successfully obtained by heterologous expression of the type II PKS gene cluster spi derived from marine Streptomyces sp. HDN155000 in the chassis host Streptomyces albus J1074. The structures with absolute configurations were elucidated using extensive MS and NMR spectroscopic methods, as well as theoretical NMR calculations and electronic circular dichroism (ECD) calculations. Interestingly, compound WS009 Z (2) contains a rare thiomethyl group, angumycinone T (4) has a novel oxo-bridge formed between C12a and C4, and angumycinone X (3) showed cytotoxicity toward K562 and NCI-H446/EP cell lines.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Falei Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chen Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiayi Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Deihai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China
| |
Collapse
|
9
|
Tiwana G, Cock IE, Cheesman MJ. Combinations of Terminalia bellirica (Gaertn.) Roxb. and Terminalia chebula Retz. Extracts with Selected Antibiotics Against Antibiotic-Resistant Bacteria: Bioactivity and Phytochemistry. Antibiotics (Basel) 2024; 13:994. [PMID: 39452260 PMCID: PMC11504310 DOI: 10.3390/antibiotics13100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) has arisen due to antibiotic overuse and misuse. Antibiotic resistance renders standard treatments less effective, making it difficult to control some infections, thereby increasing morbidity and mortality. Medicinal plants are attracting increased interest as antibiotics lose efficacy. This study evaluates the antibacterial activity of solvent extracts prepared using Terminalia bellirica and Terminalia chebula fruit against six bacterial pathogens using disc diffusion and broth microdilution assays. The aqueous and methanol extracts of T. bellirica and T. chebula showed substantial zones of inhibition (ZOIs) against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). The activity against those bacteria was strong, with minimum inhibitory concentrations (MIC) ranging from 94 µg/mL to 392 µg/mL. Additionally, the T. bellirica methanolic extract showed noteworthy antibacterial activity against Escherichia coli and an extended spectrum β-lactamase (ESBL) E. coli strain (MIC values of 755 µg/mL for both). The aqueous T. bellirica and T. chebula extracts also inhibited Klebsiella pneumoniae growth (MIC values of 784 µg/mL and 556 µg/mL, respectively). The corresponding methanolic extracts also inhibited ESBL K. pneumoniae growth (MIC values of 755 µg/mL and 1509 µg/mL, respectively). Eighteen additive interactions were observed when extracts were combined with reference antibiotics. Strong antagonism occurred when any of the extracts were mixed with polymyxin B. Liquid chromatography-mass spectroscopy (LC-MS) analysis of the extracts revealed several interesting flavonoids and tannins, including 6-galloylglucose, 1,2,6-trigalloyl-β-D-glucopyranose, 6-O-[(2E)-3-phenyl-2-propenoyl]-1-O-(3,4,5-trihydroxybenzoyl)-β-D-glucopyranose, propyl gallate, methyl gallate, sanguiin H4, hamamelitannin, pyrogallol, gallic acid, ellagic acid, chebulic acid, and chebuloside II. All extracts were nontoxic in brine shrimp assays. This lack of toxicity, combined with their antibacterial activities, suggests that these plant species may be promising sources of antibacterial compound(s) that warrant further study.
Collapse
Affiliation(s)
- Gagan Tiwana
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia;
| | - Ian Edwin Cock
- School of Environment and Science, Nathan Campus, Griffith University, Brisbane 4111, Australia;
| | - Matthew James Cheesman
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia;
| |
Collapse
|
10
|
Egu SA, Abah LO, Hussaini JZ, Onoja AD, Ali I, Habib A, Qureshi U, Idih SO, Edegbo E, Achimugu L, Omale A, Michael OC, Adaji MU, Omale JA. Erythromycin-metal complexes: One-step synthesis, molecular docking analysis and antibacterial proficiency against pathogenic strains. Heliyon 2024; 10:e35536. [PMID: 39220992 PMCID: PMC11363837 DOI: 10.1016/j.heliyon.2024.e35536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The study focused on the extraction of free erythromycin from commercially manufactured tablets and the use of metal salts to synthesize erythromycin-metal complexes, specifically involving silver (Ag), nickel (Ni), cobalt (Co), and copper (Cu). The synthesis was confirmed through various methods, including elemental analysis, thermogravimetric analysis, Fourier-transform infrared (FTIR), and UV-visible spectroscopy. The microbiological investigation involved Salmonella typhi, Escherichia coli, Staphylococcus aureus, Bacillus cereus, Candida albicans, and Microsporum canis as test organisms. The NCCLS broth microdilution reference method was used to determine the minimum fungicidal concentration and minimum inhibitory concentration of the complexes. The synthesized complexes were highly effective against a variety of fungi and bacteria, with compound Ery-Cu having MIC as low as 1.56 mg/mL, Ery-Cu and Ery-Ni with MBCs of 6.25 mg/mL and Ery-Cu having MFC of 6.25 mg/mL. Dose-dependent inhibitory effects were found upon examination of the antimicrobial susceptibility of specific complexes (Cu, Ni, Co and Ag) at varying concentrations of 100, 50, 25 and 12.5 mm/mL. Antibiotic susceptibility testing revealed efficacy against the tested pathogens. The study suggests that the synthesis of erythromycin-metal complexes, coupled with their antibacterial effectiveness against a diverse spectrum of bacteria and fungi, as they showed promising inhibitory properties when tested against a range of test species (Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella typhi, Candida albicans, and Microsporum canis), could lead to the development of innovative antibacterial agents. Molecular docking simulations were used to examine the interactions between metal complexes with proteins filamentous temperature-sensitive protein Z and lanosterol 14α-demethylase. The study highlights the need for further exploration in pharmaceutical research.
Collapse
Affiliation(s)
- Samuel Attah Egu
- Department of Pure and Industrial Chemistry, Kogi State University, Anyigba, Kogi State, Nigeria
- Genomics and Molecular Biology Training and Research Laboratory, Kogi State University, Anyigba, Kogi State, Nigeria
| | - Lian Ojotule Abah
- Department of Pure and Industrial Chemistry, Kogi State University, Anyigba, Kogi State, Nigeria
| | - Jumai Zainab Hussaini
- Department of Pure and Industrial Chemistry, Kogi State University, Anyigba, Kogi State, Nigeria
| | - Alexander David Onoja
- Department of Pure and Industrial Chemistry, Kogi State University, Anyigba, Kogi State, Nigeria
| | - Irfan Ali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Atiya Habib
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Urooj Qureshi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sunday Okpanachi Idih
- Department of Pure and Industrial Chemistry, Kogi State University, Anyigba, Kogi State, Nigeria
| | - Emmanuel Edegbo
- Department of Microbiology, Kogi State University, Anyigba, Kogi, Nigeria
| | - Lawrence Achimugu
- Department of Science Education, Kogi State University, Anyigba, Kogi, Nigeria
| | - Aminu Omale
- Department of Pure and Industrial Chemistry, Kogi State University, Anyigba, Kogi State, Nigeria
| | - Ojochide Charity Michael
- Department of Pure and Industrial Chemistry, Kogi State University, Anyigba, Kogi State, Nigeria
| | - Mohammed Umar Adaji
- Department of Pure and Industrial Chemistry, Kogi State University, Anyigba, Kogi State, Nigeria
- Genomics and Molecular Biology Training and Research Laboratory, Kogi State University, Anyigba, Kogi State, Nigeria
| | - Jamila Audu Omale
- Genomics and Molecular Biology Training and Research Laboratory, Kogi State University, Anyigba, Kogi State, Nigeria
- Department of Biochemistry, Kogi State University, Anyigba, Kogi, Nigeria
| |
Collapse
|
11
|
Klumbys E, Xu W, Koduru L, Heng E, Wei Y, Wong FT, Zhao H, Ang EL. Discovery, characterization, and engineering of an advantageous Streptomyces host for heterologous expression of natural product biosynthetic gene clusters. Microb Cell Fact 2024; 23:149. [PMID: 38790014 PMCID: PMC11127301 DOI: 10.1186/s12934-024-02416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Streptomyces is renowned for its robust biosynthetic capacity in producing medically relevant natural products. However, the majority of natural products biosynthetic gene clusters (BGCs) either yield low amounts of natural products or remain cryptic under standard laboratory conditions. Various heterologous production hosts have been engineered to address these challenges, and yet the successful activation of BGCs has still been limited. In our search for a valuable addition to the heterologous host panel, we identified the strain Streptomyces sp. A4420, which exhibited rapid initial growth and a high metabolic capacity, prompting further exploration of its potential. RESULTS We engineered a polyketide-focused chassis strain based on Streptomyces sp. A4420 (CH strain) by deleting 9 native polyketide BGCs. The resulting metabolically simplified organism exhibited consistent sporulation and growth, surpassing the performance of most existing Streptomyces based chassis strains in standard liquid growth media. Four distinct polyketide BGCs were chosen and expressed in various heterologous hosts, including the Streptomyces sp. A4420 wild-type and CH strains, alongside Streptomyces coelicolor M1152, Streptomyces lividans TK24, Streptomyces albus J1074, and Streptomyces venezuelae NRRL B-65442. Remarkably, only the Streptomyces sp. A4420 CH strain demonstrated the capability to produce all metabolites under every condition outperforming its parental strain and other tested organisms. To enhance visualization and comparison of the tested strains, we developed a matrix-like analysis involving 15 parameters. This comprehensive analysis unequivocally illustrated the significant potential of the new strain to become a popular heterologous host. CONCLUSION Our engineered Streptomyces sp. A4420 CH strain exhibits promising attributes for the heterologous expression of natural products with a focus on polyketides, offering an alternative choice in the arsenal of heterologous production strains. As genomics and cloning strategies progress, establishment of a diverse panel of heterologous production hosts will be crucial for expediting the discovery and production of medically relevant natural products derived from Streptomyces.
Collapse
Affiliation(s)
- Evaldas Klumbys
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Wei Xu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Lokanand Koduru
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Elena Heng
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Fong Tian Wong
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore
| | - Huimin Zhao
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore.
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Republic of Singapore.
| |
Collapse
|
12
|
Nakamori M, Nakatani D, Sato T, Hasuike Y, Kon S, Saito T, Nakamura H, Takahashi MP, Hida E, Komaki H, Matsumura T, Takada H, Mochizuki H. Erythromycin for myotonic dystrophy type 1: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. EClinicalMedicine 2024; 67:102390. [PMID: 38314057 PMCID: PMC10837534 DOI: 10.1016/j.eclinm.2023.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 02/06/2024] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is a devastating multisystemic disorder caused by a CTG repeat expansion in the DMPK gene, which subsequently triggers toxic RNA expression and dysregulated splicing. In a preclinical study, we demonstrated that erythromycin reduces the toxicity of abnormal RNA and ameliorates the aberrant splicing and motor phenotype in DM1 model mice. Methods This multicentre, randomised, double-blind, placebo-controlled, phase 2 trial was conducted at three centres in Japan to translate preclinical findings into practical applications in patients with DM1 by evaluating the safety and efficacy of erythromycin. Between Nov 29, 2019, and Jan 20, 2022, a total of 30 adult patients with DM1 were enrolled and randomly assigned in a 1:2:2 ratio to receive either placebo or erythromycin at two daily doses (500 mg or 800 mg) for 24 weeks. The primary outcome included the safety and tolerability of erythromycin. The secondary efficacy measures included splicing biomarkers, 6-min walk test results, muscle strength, and serum creatinine kinase (CK) values. This trial is registered with the Japan Registry of Clinical Trials, jRCT2051190069. Findings Treatment-related gastrointestinal symptoms occurred more frequently in the erythromycin group, but all adverse events were mild to moderate and resolved spontaneously. No serious safety concerns were identified. The CK levels from baseline to week 24 decreased in the overall erythromycin group compared with the placebo group (mean change of -6.4 U/L [SD 149] vs +182.8 [SD 228]), although this difference was not statistically significant (p = 0.070). Statistically significant improvements in the overall erythromycin treated groups compared to placebo were seen for two of the eleven splicing biomarkers that were each evaluated in half of the trial sample. These were MBNL1 (p = 0.048) and CACNA1S (p = 0.042). Interpretation Erythromycin demonstrated favourable safety and tolerability profiles in patients with DM1. A well-powered phase 3 trial is needed to evaluate efficacy, building on the preliminary findings from this study. Funding Japan Agency for Medical Research and Development.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Neurology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Daisaku Nakatani
- Medical Centre for Translational Research, Department of Medical Innovation, Osaka University Hospital, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoharu Sato
- Department of Biostatistics & Data Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuhei Hasuike
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiko Kon
- Department of Neurology, NHO Aomori National Hospital, 155-1 Hirano, Namioka, Aomori, 038-1331, Japan
| | - Toshio Saito
- Department of Neurology, NHO Osaka Toneyama Medical Centre, 5-1-1 Toneyama, Toyonaka, Osaka, 560-8552, Japan
| | - Harumasa Nakamura
- Translational Medical Centre, National Centre of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo, 187-8502, Japan
| | - Masanori P. Takahashi
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eisuke Hida
- Department of Biostatistics & Data Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Komaki
- Translational Medical Centre, National Centre of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo, 187-8502, Japan
| | - Tsuyoshi Matsumura
- Department of Neurology, NHO Osaka Toneyama Medical Centre, 5-1-1 Toneyama, Toyonaka, Osaka, 560-8552, Japan
| | - Hiroto Takada
- Department of Neurology, NHO Aomori National Hospital, 155-1 Hirano, Namioka, Aomori, 038-1331, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
13
|
Liao M, Jian X, Zhao Y, Fu X, Wan M, Zheng W, Dong X, Zhou W, Zhao H. "Sandwich-like" structure electrostatic spun micro/nanofiber polylactic acid-polyvinyl alcohol-polylactic acid film dressing with metformin hydrochloride and puerarin for enhanced diabetic wound healing. Int J Biol Macromol 2023; 253:127223. [PMID: 37797847 DOI: 10.1016/j.ijbiomac.2023.127223] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
A diabetic wound is a typical chronic wound with a long repair process and poor healing effects. It is an effective way to promote diabetic wound healing to design electrospinning nanofiber films with drug-assisted therapy, good air permeability and, a multilayer functional structure. In this paper, a diabetic wound dressing with a "sandwich-like" structure was designed. Metformin hydrochloride, loaded in the hydrophilic PVA inner layer, could effectively promote diabetic wound healing. The drug release was slowed down by osmosis. The laminate film dressing had good mechanical properties, with tensile strength and elongation at break reaching 5.91 MPa and 90.47 %, respectively, which was close to human skin. The laminate film loaded with erythromycin and puerarin in the hydrophobic PLA outer layer had good antibacterial properties. In addition, due to the high specific surface of the electrostatic spun film, it exhibited high water vapor permeability. It facilitates the gas exchange between the wound and the outside world. The cell experiments proved that the laminate film dressing had good biocompatibility. There was no toxic side effect on cell proliferation. In the diabetic animal wound model, it was shown that the closure rate of diabetic wound repair by laminate film reached 91.11 % in the second week. Our results suggest that the "sandwich-like" nanofiber film dressing could effectively promote the healing process and meet the various requirements of diabetic wound dressing as a promising candidate for future clinical application of chronic wound dressings.
Collapse
Affiliation(s)
- Minjian Liao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Xuewen Jian
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Yanyan Zhao
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Xuewei Fu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Meiling Wan
- Guangdong Yunzhao Biological Medical Technology Co., Ltd., Guangzhou 510515, PR China
| | - Wenxu Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Xianming Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China.
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China.
| | - Hui Zhao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
14
|
Thevin P, Curti C, Benech A, Jean C, Lamy E, Castera Ducros C, Primas N, Bertault-Peres P, Vanelle P. Low-dose erythromycin in pediatrics: Formulation and stability of 20 mg hard gelatin capsules. PLoS One 2023; 18:e0282164. [PMID: 36827282 PMCID: PMC9955640 DOI: 10.1371/journal.pone.0282164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVE Erythromycin is a macrolide antibiotic that is also prescribed off-label in premature neonates as a prokinetic agent. There is no oral formulation with dosage and/or excipients adapted for these high-risk patients. METHODS Clinical studies of erythromycin as a prokinetic agent were reviewed. Capsules of 20 milligrams of erythromycin were compounded with microcrystalline cellulose. Erythromycin capsules were analyzed using the chromatographic method described in the United States Pharmacopoeia which was found to be stability-indicating. The stability of 20 mg erythromycin capsules stored protected from light at room temperature was studied for one year. RESULTS 20 mg erythromycin capsules have a beyond use date not lower than one year. CONCLUSION 20 milligrams erythromycin capsules can be compounded in batches of 300 unities in hospital pharmacy with a beyond-use-date of one year at ambient temperature protected from light.
Collapse
Affiliation(s)
- Patrick Thevin
- Service central de la qualité et de l’information pharmaceutiques (SCQIP), Pharmacy Department, AP-HM, Marseille, France
| | - Christophe Curti
- Service central de la qualité et de l’information pharmaceutiques (SCQIP), Pharmacy Department, AP-HM, Marseille, France
- CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Equipe de Pharmaco-Chimie Radicalaire, Aix Marseille Univ, Marseille, France
- * E-mail:
| | - Alexandre Benech
- Service central de la qualité et de l’information pharmaceutiques (SCQIP), Pharmacy Department, AP-HM, Marseille, France
| | - Christophe Jean
- Pharmacie Sainte Marguerite, Pharmacy Department, AP-HM, Marseille, France
| | - Edouard Lamy
- Service central de la qualité et de l’information pharmaceutiques (SCQIP), Pharmacy Department, AP-HM, Marseille, France
- UMR 7287 CNRS, Institut des Sciences du Mouvement ISM, Faculté des Sciences du Sport Marseille, Aix Marseille Univ, Marseille, France
| | - Caroline Castera Ducros
- Service central de la qualité et de l’information pharmaceutiques (SCQIP), Pharmacy Department, AP-HM, Marseille, France
- CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Equipe de Pharmaco-Chimie Radicalaire, Aix Marseille Univ, Marseille, France
| | - Nicolas Primas
- Service central de la qualité et de l’information pharmaceutiques (SCQIP), Pharmacy Department, AP-HM, Marseille, France
- CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Equipe de Pharmaco-Chimie Radicalaire, Aix Marseille Univ, Marseille, France
| | | | - Patrice Vanelle
- Service central de la qualité et de l’information pharmaceutiques (SCQIP), Pharmacy Department, AP-HM, Marseille, France
- CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Equipe de Pharmaco-Chimie Radicalaire, Aix Marseille Univ, Marseille, France
| |
Collapse
|
15
|
Development and Optimization of Erythromycin Loaded Transethosomes Cinnamon Oil Based Emulgel for Antimicrobial Efficiency. Gels 2023; 9:gels9020137. [PMID: 36826307 PMCID: PMC9956959 DOI: 10.3390/gels9020137] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Erythromycin (EM) is a macrolide antibiotic that is frequently used to treat skin bacterial infections. It has a short half-life (1-1.5 h), instability in stomach pH, and a low oral bioavailability. These foregoing factors limit its oral application; therefore, the development of topical formulations loaded with erythromycin is an essential point to maximize the drug's concentration at the skin. Accordingly, the current study's goal was to boost the antimicrobial activity of EM by utilizing the advantages of natural oils such as cinnamon oil. Erythromycin-loaded transethosomes (EM-TE) were generated and optimized using a Box-Behnken design employing, phospholipid concentration (A), surfactant concentration (B), and ethanol content (C) as independent variables. Their effects on entrapment efficiency, EE, (Y1) and the total amount of erythromycin that penetrated the skin after 6 h, Q6h (Y2), were assessed. The optimized transethosome showed a particle size of 256.2 nm, EE of 67.96 ± 0.59%, and Q6h of 665.96 ± 5.87 (µg/cm2) after 6 h. The TEM analysis revealed that, the vesicles are well-known packed structures with a spherical shape. The optimized transethosomes formulation was further transformed into a cinnamon oil-based emulgel system using HPMC as a gelling agent. The generated EM-TE-emulgel was characterized by its physical features, in vitro, ex vivo studies, and antimicrobial activities. The formulation showed sufficient characteristics for effective topical application, and demonstrated a great stability. Additionally, EM-TE-Emulgel had the highest transdermal flux (120.19 μg/cm2·h), and showed considerably (p < 0.05) greater antimicrobial activity, than EM-TE-gel and placebo TE-Emulgel. The action of EM was subsequently augmented with cinnamon oil, which eventually showed a notable effect against bacterial growth. Finally, these results demonstrate that the transethosomes-loaded cinnamon oil-based emulgel is an alternative way to deliver erythromycin for the treatment of topical bacterial infections.
Collapse
|
16
|
Mandras N, Luganini A, Argenziano M, Roana J, Giribaldi G, Tullio V, Cavallo L, Prato M, Cavalli R, Cuffini AM, Allizond V, Banche G. Design, Characterization, and Biological Activities of Erythromycin-Loaded Nanodroplets to Counteract Infected Chronic Wounds Due to Streptococcus pyogenes. Int J Mol Sci 2023; 24:ijms24031865. [PMID: 36768189 PMCID: PMC9915227 DOI: 10.3390/ijms24031865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pyogenes causes a wide spectrum of diseases varying from mild to life threatening, despite antibiotic treatment. Nanoparticle application could facilitate the foreign pathogen fight by increasing the antimicrobial effectiveness and reducing their adverse effects. Here, we designed and produced erythromycin-loaded chitosan nanodroplets (Ery-NDs), both oxygen-free and oxygen-loaded. All ND formulations were characterized for physico-chemical parameters, drug release kinetics, and tested for biocompatibility with human keratinocytes and for their antibacterial properties or interactions with S. pyogenes. All tested NDs possessed spherical shape, small average diameter, and positive Z potential. A prolonged Ery release kinetic from Ery-NDs was demonstrated, as well as a favorable biocompatibility on human keratinocytes. Confocal microscopy images showed ND uptake and internalization by S. pyogenes starting from 3 h of incubation up to 24 h. According to cell counts, NDs displayed long-term antimicrobial efficacy against streptococci significantly counteracting their proliferation up to 24 h, thanks to the known chitosan antimicrobial properties. Intriguingly, Ery-NDs were generally more effective (104-103 log10 CFU/mL), than free-erythromycin (105 log10 CFU/mL), in the direct killing of streptococci, probably due to Ery-NDs adsorption by bacteria and prolonged release kinetics of erythromycin inside S. pyogenes cells. Based on these findings, NDs and proper Ery-NDs appear to be the most promising and skin-friendly approaches for the topical treatment of streptococcal skin infections allowing wound healing during hypoxia.
Collapse
Affiliation(s)
- Narcisa Mandras
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, 10126 Turin, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, 10126 Turin, Italy
- Correspondence: (M.A.); (V.A.); Tel.: +39-011-670-7163 (M.A.); +39-011-670-5644 (V.A.)
| | - Janira Roana
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | | | - Vivian Tullio
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Lorenza Cavallo
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Mauro Prato
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, 10126 Turin, Italy
| | - Anna Maria Cuffini
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| | - Valeria Allizond
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
- Correspondence: (M.A.); (V.A.); Tel.: +39-011-670-7163 (M.A.); +39-011-670-5644 (V.A.)
| | - Giuliana Banche
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy
| |
Collapse
|