1
|
Pugazhendhi A, Alshehri MA, Kandasamy S, Sarangi PK, Sharma A. Deciphering the importance of nanoencapsulation to improve the availability of bioactive molecules in food sources to the human body. Food Chem 2025; 464:141762. [PMID: 39509889 DOI: 10.1016/j.foodchem.2024.141762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Various bodily functions are maintained, and health benefits are provided by food-derived bioactive components. Fruits and vegetables contain numerous beneficial components, including vitamins, minerals, antioxidants, enzymes, and phytonutrients. However, the body's ability to absorb these substances at a given rate and degree frequently limits their bioavailability. If food-derived bio actives are used as therapeutic or dietary interventions, this limitation can result in low efficacy and suboptimal results. Recently, nanotechnology has been a useful method for increasing the bioavailability of bioactive compounds produced from food. Active ingredients can be delivered and absorbed more efficiently with the help of nanotechnology. By altering their size or surface properties, bioactive components can be made more soluble, permeable, and bioavailable through nanotechnology. The present review will provide an overview of the various bioactive components, the application of nanotechnology to improve the availability of bioactive molecules to humans and animals, and the challenges and safety concerns associated with nanotechnology in the production of food-derived bioactive molecules.
Collapse
Affiliation(s)
- Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641004, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico.
| |
Collapse
|
2
|
Soni AG, Verma A, Joshi R, Shah K, Soni D, Kaur CD, Saraf S, Chauhan NS. Phytoactive drugs used in the treatment of Alzheimer's disease and dementia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8633-8649. [PMID: 38940847 DOI: 10.1007/s00210-024-03243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
The prevalence of Alzheimer's disease and other forms of dementia is increasing worldwide, and finding effective treatments for these conditions is a major public health challenge. Natural bioactive drugs have been identified as a promising source of potential treatments, due to their ability to target multiple pathways and their low toxicity. This paper reviews the current state of research on natural bioactive drugs used in the treatment of Alzheimer's disease and other dementias. The paper summarizes the findings of studies on various natural compounds, including curcumin, resveratrol, caffeine, genistein, quercetin, GinkoBiloba, Withaniasomnifera, Ginseng Brahmi, Giloy, and huperzine, and their effects on cognitive function, neuroinflammation, and amyloid-beta accumulation. In this review, we discuss the mechanism of action involved in the treatment of Alzheimer's disease. The paper also discusses the challenges associated with developing natural bioactive drugs for dementia treatment, including issues related to bioavailability and standardization. Finally, the paper suggests directions for future research in this area, including the need for more rigorous clinical trials and the development of novel delivery systems to improve the efficacy of natural bioactive drugs. Overall, this review highlights the potential of natural bioactive drugs as a promising avenue for the development of safe and effective treatments for Alzheimer's disease and other dementias.
Collapse
Affiliation(s)
- Anshita Gupta Soni
- Rungta College of Pharmaceutical Sciences and Research, Raipur, Chhattisgarh, India
| | - Astha Verma
- ShriRawatpuraSarkar Institute of Pharmacy, Durg, Chhattisgarh, India
| | - Renjil Joshi
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, (U.P.), India
| | - Deependra Soni
- Faculty of Pharmacy, MATS University Campus, Aarang, Raipur, Chhattisgarh, India
| | - Chanchal Deep Kaur
- Rungta College of Pharmaceutical Sciences and Research, Raipur, Chhattisgarh, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | | |
Collapse
|
3
|
Yang X, Liu H, Cheng S, Pan C, Cai Q, Chu X, Shi S, Wei W, He D, Cheng B, Wen Y, Jia Y, Tinkov AA, Skalny AV, Zhang F. Potential involvement of connective tissue growth factor in chondrocytes apoptosis of Kashin-Beck disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117148. [PMID: 39369662 DOI: 10.1016/j.ecoenv.2024.117148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Kashin-Beck disease (KBD) is an endemic osteoarthropathy characterized by excessive chondrocytes apoptosis. T-2 toxin exposure has been proved to be its etiology. Connective tissue growth factor (CTGF) exerts a profound influence on cartilage growth and metabolism. We investigated the potential role of CTGF in KBD development and examined CTGF alterations under T-2 toxin stimulation. METHODS The levels of CTGF and chondrocyte apoptosis-related markers in cartilage and primary chondrocytes from KBD and control groups were measured using qRT-PCR, Western blotting, immunohistochemistry, and immunofluorescence. We analyzed expression changes of these genes in response to T-2 toxin. Apoptosis rates of chondrocytes induced by T-2 toxin were measured by flow cytometry and TUNEL assay. The active pharmaceutical ingredient targeting CTGF was screened through Comparative Toxicogenomics Database, and molecular docking was performed using AutoDock Tools. RESULTS The CTGF levels in KBD cartilage and chondrocytes were significantly elevated and positively associated with the levels of apoptosis-related genes. T-2 toxin exposure increased CTGF and apoptosis-related gene levels in chondrocytes, with apoptosis rates rising alongside T-2 toxin concentration. Curcumin was identified as targeting CTGF and exhibited effective binding. It could down-regulate CTGF, apoptosis-related genes, such as Cleaved caspase 3 and BAX, and also significantly reduce apoptosis rate in chondrocytes treated with T-2 toxin. CONCLUSION CTGF plays a crucial role in the development of KBD. Curcumin has shown potential in inhibiting CTGF levels and reducing chondrocyte apoptosis, highlighting its promise as a therapeutic agent for preventing cartilage damage in KBD. Our findings provided valuable insights into the pathogenesis of KBD and could promote the development of novel therapeutic strategies for this debilitating disease.
Collapse
Affiliation(s)
- Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Alexey A Tinkov
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow 119146, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl 150000, Russia
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow 119146, Russia; Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Shen D, Tuerhong K, Huang Q, Liu K, Li Y, Yang S. Computational analysis of curcumin-mediated alleviation of inflammation in periodontitis patients with experimental validation in mice. J Clin Periodontol 2024; 51:787-799. [PMID: 38348739 DOI: 10.1111/jcpe.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 05/16/2024]
Abstract
AIM Using network pharmacology and experimental validation to explore the therapeutic efficacy and mechanism of curcumin (Cur) in periodontitis treatment. MATERIALS AND METHODS Network pharmacology was utilized to predict target gene interactions of Cur-Periodontitis. Molecular docking was used to investigate the binding affinity of Cur for the predicted targets. A mouse model with ligature-induced periodontitis (LIP) was used to verify the therapeutic effect of Cur. Microcomputed tomography (micro-CT) was used to evaluate alveolar bone resorption, while western blotting, haematoxylin-eosin staining and immunohistochemistry were used to analyse the change in immunopathology. SYTOX Green staining was used to assess the in vitro effect of Cur in a mouse bone marrow-isolated neutrophil model exposed to lipopolysaccharide. RESULTS Network pharmacology identified 114 potential target genes. Enrichment analysis showed that Cur can modulate the production of neutrophil extracellular traps (NETs). Molecular docking experiments suggested that Cur effectively binds to neutrophil elastase (ELANE), peptidylarginine deiminase 4 (PAD4) and cathepsin G, three enzymes involved in NETs. In LIP mice, Cur alleviated alveolar bone resorption and reduced the expression of ELANE and PAD4 in a time-dependent but dose-independent manner. Cur can directly inhibit NET formation in the cell model. CONCLUSIONS Our research suggested that Cur may alleviate experimental periodontitis by inhibiting NET formation.
Collapse
Affiliation(s)
- Danfeng Shen
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Kamoran Tuerhong
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Qi Huang
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Kehao Liu
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yuzhou Li
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Sheng Yang
- Department of Prosthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| |
Collapse
|
5
|
Bertoncini-Silva C, Vlad A, Ricciarelli R, Giacomo Fassini P, Suen VMM, Zingg JM. Enhancing the Bioavailability and Bioactivity of Curcumin for Disease Prevention and Treatment. Antioxidants (Basel) 2024; 13:331. [PMID: 38539864 PMCID: PMC10967568 DOI: 10.3390/antiox13030331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Curcumin, a natural polyphenolic component from Curcuma longa roots, is the main bioactive component of turmeric spice and has gained increasing interest due to its proposed anti-cancer, anti-obesity, anti-inflammatory, antioxidant, and lipid-lowering effects, in addition to its thermogenic capacity. While intake from dietary sources such as curry may be sufficient to affect the intestinal microbiome and thus may act indirectly, intact curcumin in the body may be too low (<1 microM) and not sufficient to affect signaling and gene expression, as observed in vitro with cultured cells (10-20 microM). Several strategies can be envisioned to increase curcumin levels in the body, such as decreasing its metabolism or increasing absorption through the formation of nanoparticles. However, since high curcumin levels could also lead to undesired regulatory effects on cellular signaling and gene expression, such studies may need to be carefully monitored. Here, we review the bioavailability of curcumin and to what extent increasing curcumin levels using nanoformulations may increase the bioavailability and bioactivity of curcumin and its metabolites. This enhancement could potentially amplify the disease-preventing effects of curcumin, often by leveraging its robust antioxidant properties.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
6
|
Jin F, Fan P, Wu Y, Yang Q, Li J, Liu H. Efficacy and Mechanisms of Natural Products as Therapeutic Interventions for Chronic Respiratory Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:57-88. [PMID: 38353634 DOI: 10.1142/s0192415x24500034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chronic respiratory diseases are long-term conditions affecting the airways and other lung components that are characterized by a high prevalence, disability rate, and mortality rate. Further optimization of their treatment is required. Natural products, primarily extracted from organisms, possess specific molecular and structural formulas as well as distinct chemical and physical properties. These characteristics grant them the advantages of safety, gentleness, accessibility, and minimal side effects. The numerous advances in the use of natural products for treating chronic respiratory diseases have provided a steady source of motivation for new drug research and development. In this paper, we introduced the pathogenesis of chronic respiratory diseases and natural products. Furthermore, we classified natural products according to their mechanism for treating chronic respiratory diseases and describe the ways in which these products can alleviate the pathological symptoms. Simultaneously, we elaborate on the signal transduction pathways and biological impacts of natural products' targeting. Additionally, we present future prospects for natural products, considering their combination treatment approaches and administration methods. The significance of this review extends to both the research on preventing and treating chronic respiratory diseases, as well as the advancement of novel drug development in this field.
Collapse
Affiliation(s)
- Fanli Jin
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| | - Pengbei Fan
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| | - Yuanyuan Wu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| | - Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology, Xi'an Jiaotong University Xi'an, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| | - Han Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| |
Collapse
|
7
|
Jafari-Nozad AM, Jafari A, Yousefi S, Bakhshi H, Farkhondeh T, Samarghandian S. Anti-gout and Urate-lowering Potentials of Curcumin: A Review from Bench to Beside. Curr Med Chem 2024; 31:3715-3732. [PMID: 37488765 DOI: 10.2174/0929867331666230721154653] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Gouty arthritis is a complex form of inflammatory arthritis, triggered by the sedimentation of monosodium urate crystals in periarticular tissues, synovial joints, and other sites in the body. Curcumin is a natural polyphenol compound, isolated from the rhizome of the plant Curcuma longa, possessing countless physiological features, including antioxidant, anti-inflammatory, and anti-rheumatic qualities. OBJECTIVE This study aimed to discuss the beneficial impacts of curcumin and its mechanism in treating gout disease. METHODS Ten English and Persian databases were used to conduct a thorough literature search. Studies examining the anti-gouty arthritis effects of curcumin and meeting the inclusion criteria were included. RESULTS According to the studies, curcumin has shown xanthine oxidase and urate transporter- 1 inhibitory properties, uric acid inhibitory characteristics, and antioxidant and anti- inflammatory effects. However, some articles found no prominent reduction in uric acid levels. CONCLUSION In this review, we emphasized the potency of curcumin and its compounds against gouty arthritis. Despite the potency, we suggest an additional well-designed evaluation of curcumin, before its therapeutic effectiveness is completely approved as an antigouty arthritis agent.
Collapse
Affiliation(s)
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saman Yousefi
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hasan Bakhshi
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| |
Collapse
|
8
|
Sami A, Haider MZ, Shafiq M. Microbial nanoenzymes: Features and applications. FUNGAL SECONDARY METABOLITES 2024:353-367. [DOI: 10.1016/b978-0-323-95241-5.00015-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Simsekli O, Bilinmis I, Celik S, Arık G, Baba AY, Karakucuk A. Advancing biofilm management through nanoformulation strategies: a review of dosage forms and administration routes. J Drug Target 2023; 31:931-949. [PMID: 37831630 DOI: 10.1080/1061186x.2023.2270619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Biofilms are complex microbial communities formed by the attachment of bacteria or fungi to surfaces encased in a self-produced polymeric matrix. These biofilms are highly resistant to conventional antimicrobial therapies. The resistance mechanisms exhibited by biofilms include low antibiotic absorption, sluggish replication, adaptive stress response, and the formation of dormant-like phenotypes. The eradication of biofilms requires alternative strategies and approaches. Nanotechnological drug delivery systems allow excellent control over the drug chemistry, surface area, particle size, particle shape, and composition of nanostructures. Nanoformulations can enhance the efficacy of antimicrobial agents by improving their bioavailability, stability, and targeted delivery to the site of infection that helps biofilm eradication more effectively. In addition to nanoformulations, the route of administration and choice of dosage forms play a crucial role in treating biofilm infections. Systemic administration of antibiotics is effective in controlling systemic infection and sepsis associated with biofilms. Alternative routes of administration, such as inhalation, vaginal, ocular, or dermal, have been explored to target biofilm infections in specific organs. This review primarily examines the utilisation of nanoformulations in various administration routes for biofilm management. It also provides an overview of biofilms, current approaches, and the drawbacks associated with conventional methods.
Collapse
Affiliation(s)
- Oyku Simsekli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Irfan Bilinmis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Sumeyye Celik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Gizem Arık
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Abdullah Yucel Baba
- Vocational School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Alptug Karakucuk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
10
|
Singh S, Semwal BC, Sharma H, Sharma D. Impact of Phytomolecules with Nanotechnology on the Treatment of
Inflammation. CURRENT BIOACTIVE COMPOUNDS 2023; 19. [DOI: 10.2174/1573407219666230807150030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 01/06/2025]
Abstract
Abstract:
Inflammation is a part of the biological response of body tissues against harmful stimuli,
such as damaged cells, pathogens, irradiations, and toxic compounds. Numerous treatments, including
anti-inflammatory drugs that treat the condition of inflammation, are available for its management.
Because of the severe adverse effects associated with synthetic medications, phytotherapy
may be a promising and effective approach to treating inflammation. The therapeutic potential of
herbs is due to their capacity to target a variety of inflammatory mediators, including chemokines,
cytokines, nitric oxide, lipoxygenase, nuclear factor kappa-B, and arachidonic acid. Furthermore,
nanomedicine may be a valuable and effective formulation approach for overcoming the drawbacks
of phytoconstituents, such as their low bioavailability, high first-pass metabolism, and poor stability.
The current manuscript provides a thorough description of many phytoconstituents and herbal
plants that have great potential for treating inflammation-related diseases, as well as information on
their limitations, drug formulations, and regulatory issues.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Bhupesh C Semwal
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University Mathura, U.P, 281406, India
| | - Divya Sharma
- Parexel International,
DLF Building Tower F, 3rd Floor, Chandigarh Technology Park, Chandigarh-160101, India
| |
Collapse
|
11
|
Paganelli A, Diomede F, Marconi GD, Pizzicannella J, Rajan TS, Trubiani O, Paganelli R. Inhibition of LPS-Induced Inflammatory Response of Oral Mesenchymal Stem Cells in the Presence of Galectin-3. Biomedicines 2023; 11:1519. [PMID: 37371614 DOI: 10.3390/biomedicines11061519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Galectin-3 (GAL-3) is a beta-galactoside binding lectin produced by mesenchymal stem cells (MSCs) and other cell sources under inflammatory conditions. Several studies have reported that GAL-3 exerts an anti-inflammatory action, regulated by its natural ligand GAL-3 BP. In the present study, we aimed to assess the GAL-3 mediated regulation of the MSC function in an LPS-induced inflammation setting. Human gingival mesenchymal stem cells (hGMSCs) were stimulated in vitro with LPSs; the expression of TLR4, NFκB p65, MyD88 and NALP3 were assessed in the hGMSCs via immunofluorescence imaging using confocal microscopy, Western blot assay, and RT-PCR before and after the addition of GAL-3, both alone and with the addition of its inhibitors. LPSs stimulated the expression of TLR4, NFκB p65, MyD88 and NALP3 in hGMSCs, which was inhibited by GAL-3. The addition of either GAL3-BP or the antibody to GAL-3 were able to revert the GAL-3-mediated effects, restoring the expression of TLR4, NFκB p65, MyD88 and NALP3. GAL-3 induces the downregulation of the LPS-induced inflammatory program in MSCs.
Collapse
Affiliation(s)
- Alessia Paganelli
- PhD Course in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University "G. d'Annunzio" Chieti-Pescara, Viale Pindaro, 42, 65127 Pescara, Italy
| | - Thangavelu Soundara Rajan
- Research and Development Unit, Theertha Biopharma Private Limited, KIADB, Industrial Area, Bommasandra, Jigani Link Road, Bangalore 560105, India
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Roberto Paganelli
- Saint Camillus International University of Health and Medical Sciences (UniCamillus), 00131 Rome, Italy
| |
Collapse
|
12
|
Gu G, Ren J, Zhu B, Shi Z, Feng S, Wei Z. Multiple mechanisms of curcumin targeting spinal cord injury. Biomed Pharmacother 2023; 159:114224. [PMID: 36641925 DOI: 10.1016/j.biopha.2023.114224] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/16/2023] Open
Abstract
Spinal cord injury (SCI) is an irreversible disease process with a high disability and mortality rate. After primary spinal cord injury, the secondary injury may occur in sequence, which is composed of ischemia and hypoxia, excitotoxicity, calcium overload, oxidative stress and inflammation, resulting in massive death of parenchymal cells in the injured area, followed by the formation of syringomyelia. Effectively curbing the process of secondary injury can promote nerve repair and improve functional prognosis. As the main active ingredient in turmeric, curcumin can play an important role in reducing inflammation and oxidation, protecting the neurons, and ultimately reducing spinal cord injury. This article reviews the effects of curcumin on the repair of nerve injury, with emphasis on the various mechanisms by which curcumin promotes the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Guangjin Gu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Ren
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhongju Shi
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| | - Zhijian Wei
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
13
|
Khan SU, Khan MI, Khan MU, Khan NM, Bungau S, Hassan SSU. Applications of Extracellular Vesicles in Nervous System Disorders: An Overview of Recent Advances. Bioengineering (Basel) 2022; 10:51. [PMID: 36671622 PMCID: PMC9854809 DOI: 10.3390/bioengineering10010051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Diseases affecting the brain and spinal cord fall under the umbrella term "central nervous system disease". Most medications used to treat or prevent chronic diseases of the central nervous system cannot cross the blood-brain barrier (BBB) and hence cannot reach their intended target. Exosomes facilitate cellular material movement and signal transmission. Exosomes can pass the blood-brain barrier because of their tiny size, high delivery efficiency, minimal immunogenicity, and good biocompatibility. They enter brain endothelial cells via normal endocytosis and reverse endocytosis. Exosome bioengineering may be a method to produce consistent and repeatable isolation for clinical usage. Because of their tiny size, stable composition, non-immunogenicity, non-toxicity, and capacity to carry a wide range of substances, exosomes are indispensable transporters for targeted drug administration. Bioengineering has the potential to improve these aspects of exosomes significantly. Future research into exosome vectors must focus on redesigning the membrane to produce vesicles with targeting abilities to increase exosome targeting. To better understand exosomes and their potential as therapeutic vectors for central nervous system diseases, this article explores their basic biological properties, engineering modifications, and promising applications.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|