1
|
Liu N, Zhang B, Lin N. Review on the role of autophagy in the toxicity of nanoparticles and the signaling pathways involved. Chem Biol Interact 2025; 406:111356. [PMID: 39701490 DOI: 10.1016/j.cbi.2024.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
As the development of nanotechnology, the application of nanoproducts and the advancement of nanomedicine, the contact of nanoparticles (NPs) with human body is becoming increasingly prevalent. This escalation elevates the risk of NPs exposure for workers, consumers, researchers, and both aquatic and terrestrial organisms throughout the production, usage, and disposal stages. Consequently, evaluating nanotoxicity remains critically important, though standardized assessment criteria are still lacking. The diverse and complex properties of NPs further complicate the understanding of their toxicological mechanisms. Autophagy, a fundamental cellular process, exhibits dual functions-both pro-survival and pro-death. This review offers an updated perspective on the dual roles of autophagy in nanotoxicity and examines the factors influencing autophagic responses. However, no definitive framework exists for predicting NPs-induced autophagy. Beyond the conventional autophagy pathways, the review highlights specific transcription factors activated by NPs and explores metabolic reprogramming. Particular attention is given to NPs-induced selective autophagy, including mitophagy, ER-phagy, ferritinophagy, lysophagy, and lipophagy. Additionally, the review investigates autophagy's involvement in NPs-mediated biological processes such as ferroptosis, inflammation, macrophage polarization, epithelial-mesenchymal transition, tumor cell proliferation and drug resistance, as well as liver and kidney injury, neurotoxicity, and other diseases. In summary, this review presents a novel update on selective autophagy-mediated nanotoxicity and elucidates the broader interactions of autophagy in NPs-induced biological processes. Collectively, these insights offer valuable strategies for mitigating nanotoxicity through autophagy modulation and advancing the development of NPs in biomedical applications.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Wang CI, Chen CY, Chen TW, Cheng CC, Hong SW, Tsai TY, Chang KP. PSMA2 promotes chemo- and radioresistance of oral squamous cell carcinoma by modulating mitophagy pathway. Cell Death Discov 2025; 11:2. [PMID: 39794329 PMCID: PMC11724067 DOI: 10.1038/s41420-025-02286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Oral cavity squamous cell carcinoma (OSCC) represents the most prevalent malignancy among head and neck squamous cell carcinomas (HNSCCs). Standard treatment modalities include surgical resection combined with radiation and chemotherapy. However, locoregional failure remains a critical issue affecting the prognosis of OSCC patients, largely due to tumor resistance against radiation or chemotherapy. In this study, we established a gene database related to OSCC recurrence and identified PSMA2 as a novel molecule influencing prognosis in OSCC patients. An independent Taiwanese cohort confirmed that elevated PSMA2 transcript levels were associated with poorer prognosis and contributed to the chemo- and radioresistance phenotype in OSCC. Furthermore, we confirmed that PSMA2 regulates cell cycle, mitochondrial dysfunction, and mitophagy, thereby contributing to carcinogenesis and resistance. Notably, mitophagy inducer exhibit antitumor effects in PSMA2-overexpressing OSCC xenograft mouse model. Collectively, our results provide a mechanistic understanding of the atypical function of PSMA2 in promoting OSCC recurrence.
Collapse
Affiliation(s)
- Chun-I Wang
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chun-Chia Cheng
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/ Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Wen Hong
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Tsung-You Tsai
- Department of Otolaryngology-Head & Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head & Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Sun B, Ding P, Song Y, Zhou J, Chen X, Peng C, Liu S. FDX1 downregulation activates mitophagy and the PI3K/AKT signaling pathway to promote hepatocellular carcinoma progression by inducing ROS production. Redox Biol 2024; 75:103302. [PMID: 39128228 PMCID: PMC11366913 DOI: 10.1016/j.redox.2024.103302] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction and metabolic reprogramming can lead to the development and progression of hepatocellular carcinoma (HCC). Ferredoxin 1 (FDX1) is a small mitochondrial protein and recent studies have shown that FDX1 plays an important role in tumor cuproptosis, but its role in HCC is still elusive. In this study, we aim to investigate the expression and novel functions of FDX1 in HCC. METHODS FDX1 expression was first analyzed in publicly available datasets and verified by immunohistochemistry, qRT-PCR and Western blot. In vitro and in vivo experiments were applied to explore the functions of FDX1. Non-targeted metabolomics and RNA-sequencing were used to determine molecular mechanism. mRFP-GFP-LC3 lentivirus transfection, Mito-Tracker Red and Lyso-Tracker Green staining, transmission electron microscopy, flow cytometry, JC-1 staining, etc. were used to analyze mitophagy or ROS levels. Hydrodynamic tail vein injection (HTVi) and patient-derived organoid (PDO) models were used to analyze effect of FDX1 overexpression. RESULTS FDX1 expression is significantly downregulated in HCC tissues. FDX1 downregulation promotes HCC cell proliferation, invasion in vitro and growth, metastasis in vivo. In addition, FDX1 affects metabolism of HCC cells and is associated with autophagy. We then confirmed that FDX1 deficiency increases ROS levels, activates mitophagy and the PI3K/AKT signaling pathway in HCC cells. Interestingly, scavenging ROS attenuates the tumor-promoting role and mitophagy of FDX1 downregulation. The results of HTVi and PDO models both find that FDX1 elevation significantly inhibits HCC progression. Moreover, low FDX1 expression is associated with shorter survival and is an independent risk factor for prognosis in HCC patients. CONCLUSIONS Our research had investigated novel functions of FDX1 in HCC. Downregulation of FDX1 contributes to metabolic reprogramming and leads to ROS-mediated activation of mitophagy and the PI3K/AKT signaling pathway. FDX1 is a potential prognostic biomarker and increasing FDX1 expression may be a potential therapeutic approach to inhibit HCC progression.
Collapse
Affiliation(s)
- Bo Sun
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China; Hunan Engineering Research Center of Digital Hepatobiliary Medicine, Changsha, 410005, China; Hunan Key Laboratory for the Prevention and Treatment of Biliary Tract Diseases, Changsha, 410005, China
| | - Peng Ding
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Yinghui Song
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Jia Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Xu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China; Hunan Key Laboratory for the Prevention and Treatment of Biliary Tract Diseases, Changsha, 410005, China.
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China; Hunan Engineering Research Center of Digital Hepatobiliary Medicine, Changsha, 410005, China; Hunan Key Laboratory for the Prevention and Treatment of Biliary Tract Diseases, Changsha, 410005, China.
| |
Collapse
|
4
|
Liu N, Liang Y, Wei T, Huang X, Zhang T, Tang M. ROS-mediated NRF2/p-ERK1/2 signaling-involved mitophagy contributes to macrophages activation induced by CdTe quantum dots. Toxicology 2024; 505:153825. [PMID: 38710382 DOI: 10.1016/j.tox.2024.153825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Cadmium telluride (CdTe) quantum dots (QDs) have garnered significant attention for tumor imaging due to their exceptional properties. However, there remains a need for further investigation into their potential toxicity mechanisms and corresponding enhancements. Herein, CdTe QDs were observed to accumulate in mouse liver, leading to a remarkable overproduction of IL-1β and IL-6. Additionally, there was evidence of macrophage infiltration and activation following exposure to 12.5 μmol/kg body weight of QDs. To elucidate the underlying mechanism of macrophage activation, CdTe QDs functionalized with 3-mercaptopropionic acid (MPA) were utilized. In vitro experiments revealed that 1.0 μM MPA-CdTe QDs activated PINK1-dependent mitophagy in RAW264.7 macrophages. Critically, the autophagic flux remained unimpeded, as demonstrated by the absence of p62 accumulation, LC3 turnover assay results, and successful fusion of autophagosomes with lysosomes. Mechanically, QDs increased reactive oxygen species (ROS) and mitoROS by damaging both mitochondria and lysosomes. ROS, in turn, inhibited NRF2, resulting in the phosphorylation of ERK1/2 and subsequent activation of mitophagy. Notably, 1.0 μM QDs disrupted lysosomes but autophagic flux was not impaired. Eventually, the involvement of the ROS-NRF2-ERK1/2 pathway-mediated mitophagy in the increase of IL-1β and IL-6 in macrophages was confirmed using Trolox, MitoTEMPO, ML385, specific siRNAs, and lentivirus-based interventions. This study innovatively revealed the pro-inflammatory rather than anti-inflammatory role of mitophagy in nanotoxicology, shedding new light on the mechanisms of mitochondrial disorders induced by QDs and identifying several molecular targets to comprehend the toxicological mechanisms of CdTe QDs.
Collapse
Affiliation(s)
- Na Liu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - Ying Liang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
5
|
Devanabanda M, Sana SS, Madduri R, Kim SC, Iravani S, Varma RS, Vadde R. Immunomodulatory effects of copper nanoparticles against mitogen-stimulated rat splenic and thymic lymphocytes. Food Chem Toxicol 2024; 184:114420. [PMID: 38151072 DOI: 10.1016/j.fct.2023.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
In the present study, we have evaluated the effects of copper (Cu) nanoparticles (NPs) on the primary B-and T-lymphocytes proliferation, cytokine levels, and bio-distribution through in vitro, in vivo and ex-vivo studies to allow the possible exploitations of CuNPs in biomedical applications. CuNPs were characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). The proliferative response of lymphocytes was studied by 3H-thymidine incorporation assay and lymphocyte viability through trypan blue assay. The bio-distribution of CuNPs into lymphoid organs was examined by using ex-vivo imaging system. Cytokine levels in plasma of control and CuNPs treated animal groups were determined by enzyme-linked immunosorbent assay (ELISA) method along with other biochemical analysis. CuNPs significantly suppressed the proliferation of primary splenic and thymic lymphocytes in a dose dependent manner. Ex-vivo imaging exhibited the distribution of CuNPs in spleen and thymus. Oral administration of CuNPs (2 mg and 10 mg/kg body weight) significantly inhibited the proliferation of splenic and thymic lymphocytes along with lowered cytokines levels (TNF-alpha and IL-2) on comparison with controls. The results indicated the significant inhibition of lymphocytes proliferative response and secretion of cytokines, thus unveiling the immunomodulatory effects of CuNPs.
Collapse
Affiliation(s)
- Mallaiah Devanabanda
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, 516005, India; Cellular Immunology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500042, India
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Ramanadham Madduri
- Cellular Immunology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500042, India
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, 516005, India.
| |
Collapse
|
6
|
Yan T, Ding F, Zhang Y, Wang Y, Wang Y, Zhang Y, Zhu F, Zhang G, Zheng X, Jia G, Zhou F, Zhao Y, Zhao Y. Astaxanthin Inhibits H 2O 2-Induced Excessive Mitophagy and Apoptosis in SH-SY5Y Cells by Regulation of Akt/mTOR Activation. Mar Drugs 2024; 22:57. [PMID: 38393028 PMCID: PMC10890442 DOI: 10.3390/md22020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Oxidative stress, which damages cellular components and causes mitochondrial dysfunction, occurs in a variety of human diseases, including neurological disorders. The clearance of damaged mitochondria via mitophagy maintains the normal function of mitochondria and facilitates cell survival. Astaxanthin is an antioxidant known to have neuroprotective effects, but the underlying mechanisms remain unclear. This study demonstrated that astaxanthin inhibited H2O2-induced apoptosis in SH-SY5Y cells by ameliorating mitochondrial damage and enhancing cell survival. H2O2 treatment significantly reduced the levels of activated Akt and mTOR and induced mitophagy, while pretreatment with astaxanthin prevented H2O2-induced inhibition of Akt and mTOR and attenuated H2O2-induced mitophagy. Moreover, the inhibition of Akt attenuated the protective effect of astaxanthin against H2O2-induced cytotoxicity. Taken together, astaxanthin might inhibit H2O2-induced apoptosis by protecting mitochondrial function and reducing mitophagy. The results also indicate that the Akt/mTOR signaling pathway was critical for the protection of astaxanthin against H2O2-induced cytotoxicity. The results from the present study suggest that astaxanthin can reduce neuronal oxidative injury and may have the potential to be used for preventing neurotoxicity associated with neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China; (T.Y.); (F.D.); (Y.Z.); (Y.W.); (Y.W.); (Y.Z.); (F.Z.); (G.Z.); (X.Z.); (G.J.); (F.Z.); (Y.Z.)
| |
Collapse
|
7
|
Burlec AF, Corciova A, Boev M, Batir-Marin D, Mircea C, Cioanca O, Danila G, Danila M, Bucur AF, Hancianu M. Current Overview of Metal Nanoparticles' Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals (Basel) 2023; 16:1410. [PMID: 37895881 PMCID: PMC10610223 DOI: 10.3390/ph16101410] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Metal nanoparticles (NPs) have garnered considerable attention, due to their unique physicochemical properties, that render them promising candidates for various applications in medicine and industry. This article offers a comprehensive overview of the most recent advancements in the manufacturing, characterization, and biomedical utilization of metal NPs, with a primary focus on silver and gold NPs. Their potential as effective anticancer, anti-inflammatory, and antimicrobial agents, drug delivery systems, and imaging agents in the diagnosis and treatment of a variety of disorders is reviewed. Moreover, their translation to therapeutic settings, and the issue of their inclusion in clinical trials, are assessed in light of over 30 clinical investigations that concentrate on administering either silver or gold NPs in conditions ranging from nosocomial infections to different types of cancers. This paper aims not only to examine the biocompatibility of nanomaterials but also to emphasize potential challenges that may limit their safe integration into healthcare practices. More than 100 nanomedicines are currently on the market, which justifies ongoing study into the use of nanomaterials in medicine. Overall, the present review aims to highlight the potential of silver and gold NPs as innovative and effective therapeutics in the field of biomedicine, citing some of their most relevant current applications.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Andreia Corciova
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Monica Boev
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Denisa Batir-Marin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Oana Cioanca
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Gabriela Danila
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Marius Danila
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Anca Florentina Bucur
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Monica Hancianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| |
Collapse
|
8
|
Cordani M, Condello M, Meschini S, Strippoli R. Editorial: Autophagy modulation in cancer treatment utilizing nanomaterials and nanocarriers. Front Oncol 2023; 13:1217401. [PMID: 37346074 PMCID: PMC10280287 DOI: 10.3389/fonc.2023.1217401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
9
|
Sivamaruthi BS, Thangaleela S, Kesika P, Suganthy N, Chaiyasut C. Mesoporous Silica-Based Nanoplatforms Are Theranostic Agents for the Treatment of Inflammatory Disorders. Pharmaceutics 2023; 15:pharmaceutics15020439. [PMID: 36839761 PMCID: PMC9960588 DOI: 10.3390/pharmaceutics15020439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Complete recovery from infection, sepsis, injury, or trauma requires a vigorous response called inflammation. Inflammatory responses are essential in balancing tissue homeostasis to protect the tissue or resolve harmful stimuli and initiate the healing process. Identifying pathologically important inflammatory stimuli is important for a better understanding of the immune pathways, mechanisms of inflammatory diseases and organ dysfunctions, and inflammatory biomarkers and for developing therapeutic targets for inflammatory diseases. Nanoparticles are an efficient medical tool for diagnosing, preventing, and treating various diseases due to their interactions with biological molecules. Nanoparticles are unique in diagnosis and therapy in that they do not affect the surroundings or show toxicity. Modern medicine has undergone further development with nanoscale materials providing advanced experimentation, clinical use, and applications. Nanoparticle use in imaging, drug delivery, and treatment is growing rapidly owing to their spectacular accuracy, bioavailability, and cellular permeability. Mesoporous silica nanoparticles (MSNs) play a significant role in nano therapy with several advantages such as easy synthesis, loading, controllability, bioavailability over various surfaces, functionalization, and biocompatibility. MSNs can be used as theranostics in immune-modulatory nano systems to diagnose and treat inflammatory diseases. The application of MSNs in the preparation of drug-delivery systems has been steadily increasing in recent decades. Several preclinical studies suggest that an MSN-mediated drug-delivery system could aid in treating inflammatory diseases. This review explains the role of nanoparticles in medicine, synthesis, and functional properties of mesoporous silica nanoparticles and their therapeutic role against various inflammatory diseases.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natarajan Suganthy
- Bionanomaterials Research Laboratory, Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, India
- Correspondence: (N.S.); (C.C.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.S.); (C.C.)
| |
Collapse
|