1
|
Alkhallawi MFH, Mohammed MH, Hemmatzadeh F, Petrovski K. Exploring Metal Ions as Potential Antimicrobial Agents to Combat Future Drug Resistance in Mycoplasma bovis. Microorganisms 2025; 13:169. [PMID: 39858937 PMCID: PMC11767636 DOI: 10.3390/microorganisms13010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The rise in antimicrobial resistance (AMR) in Mycoplasma bovis underscores the urgent need for alternative treatments. This study evaluated the minimal inhibitory concentrations (MICs) of four metal ions (cobalt, copper, silver, and zinc) and colloidal silver against 15 clinical M. bovis isolates, alongside conventional antimicrobials (florfenicol, tetracycline, tulathromycin, and tylosin). Colloidal silver demonstrated the most effective antimicrobial activity, inhibiting 81.25% of isolates at 1.5 mg/L, while silver inhibited 93.7% of isolates at concentrations above 1.5 mg/L. Copper exhibited notable efficacy, inhibiting 37.5% of isolates at 1.5 mg/L, with a small proportion responding at 0.1 mg/L. Cobalt and zinc displayed variable activity, with MIC values ranging from 0.7 to 12.5 mg/L. In contrast, conventional antimicrobials showed limited effectiveness: tetracycline inhibited 31.25% of isolates at ≥16 mg/L, tylosin inhibited 25% at 16 mg/L, and tulathromycin MICs ranged from 0.5 to 8 mg/L. Time-kill assays revealed a reduction in M. bovis viability after eight hours of exposure to silver and colloidal silver, though higher concentrations (4×-8× MIC) were required for complete eradication. These findings highlight the significant potential of colloidal silver and copper as alternatives for treating M. bovis infections and combating AMR. Further research is essential to explore their standalone and synergistic applications for therapeutic use.
Collapse
Affiliation(s)
- Mauida F. Hasoon Alkhallawi
- Australian Center for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, The University of Adelaide, Rose Worthy Campus, Mudla Wirra Rd., Roseworthy, SA 5371, Australia; (M.H.M.); (F.H.)
| | | | | | - Kiro Petrovski
- Australian Center for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, The University of Adelaide, Rose Worthy Campus, Mudla Wirra Rd., Roseworthy, SA 5371, Australia; (M.H.M.); (F.H.)
| |
Collapse
|
2
|
Wu G, Xu Z, Yu Y, Zhang M, Wang S, Duan S, Liu X. Biomaterials-based phototherapy for bacterial infections. Front Pharmacol 2024; 15:1513850. [PMID: 39697551 PMCID: PMC11652144 DOI: 10.3389/fphar.2024.1513850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Bacterial infections and antibiotic resistance are global health problems, and current treatments for bacterial infections still rely on the use of antibiotics. Phototherapy based on the use of a photosensitizer has high efficiency, a broad spectrum, strong selectivity, does not easily induce drug resistance, and is expected to become an effective strategy for the treatment of bacterial infections, particularly drug-resistant infections. This article reviews antimicrobial strategies of phototherapy based on photosensitizers, including photodynamic therapy (PDT), photothermal therapy (PTT), and their combination. These methods have significant application potential in combating multi-drug-resistant bacterial and biofilm infections, providing an alternative to traditional antibiotics and chemical antibacterial agents.
Collapse
Affiliation(s)
- Guangzhi Wu
- Department of Hand & Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Yu
- Department of Infectious Diseases, Orthopedic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Minglei Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuaishuai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuo Duan
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xilin Liu
- Department of Hand & Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Radhakrishna U, Radhakrishnan R, Uppala LV, Muvvala SB, Prajapati J, Rawal RM, Bahado-Singh RO, Sadhasivam S. Prenatal opioid exposure significantly impacts placental protein kinase C (PKC) and drug transporters, leading to drug resistance and neonatal opioid withdrawal syndrome. Front Neurosci 2024; 18:1442915. [PMID: 39238930 PMCID: PMC11376091 DOI: 10.3389/fnins.2024.1442915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024] Open
Abstract
Background Neonatal Opioid Withdrawal Syndrome (NOWS) is a consequence of in-utero exposure to prenatal maternal opioids, resulting in the manifestation of symptoms like irritability, feeding problems, tremors, and withdrawal signs. Opioid use disorder (OUD) during pregnancy can profoundly impact both mother and fetus, disrupting fetal brain neurotransmission and potentially leading to long-term neurological, behavioral, and vision issues, and increased infant mortality. Drug resistance complicates OUD and NOWS treatment, with protein kinase regulation of drug transporters not fully understood. Methods DNA methylation levels of ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, along with protein kinase C (PKC) genes, were assessed in 96 placental samples using the Illumina Infinium MethylationEPIC array (850K). Samples were collected from three distinct groups: 32 mothers with infants prenatally exposed to opioids who needed pharmacological intervention for NOWS, 32 mothers with prenatally opioid-exposed infants who did not necessitate NOWS treatment, and 32 mothers who were not exposed to opioids during pregnancy. Results We identified 69 significantly differentially methylated SLCs, with 24 hypermethylated and 34 hypomethylated, and 11 exhibiting both types of methylation changes including SLC13A3, SLC15A2, SLC16A11, SLC16A3, SLC19A2, and SLC26A1. We identified methylation changes in 11 ABC drug transporters (ABCA1, ABCA12, ABCA2, ABCB10, ABCB5, ABCC12, ABCC2, ABCC9, ABCE1, ABCC7, ABCB3): 3 showed hypermethylation, 3 hypomethylation, and 5 exhibited both. Additionally, 7 PKC family genes (PRKCQ, PRKAA1, PRKCA, PRKCB, PRKCH, PRKCI, and PRKCZ) showed methylation changes. These genes are associated with 13 pathways involved in NOWS, including ABC transporters, bile secretion, pancreatic secretion, insulin resistance, glutamatergic synapse, and gastric acid secretion. Conclusion We report epigenetic changes in PKC-related regulation of drug transporters, which could improve our understanding of clinical outcomes like drug resistance, pharmacokinetics, drug-drug interactions, and drug toxicity, leading to maternal relapse and severe NOWS. Novel drugs targeting PKC pathways and transporters may improve treatment outcomes for OUD in pregnancy and NOWS.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lavanya V Uppala
- College of Information Science & Technology, the University of Nebraska at Omaha, Peter Kiewit Institute, Omaha, NE, United States
| | - Srinivas B Muvvala
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M Rawal
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Franco Machado J, Cordeiro S, Duarte JN, Costa PJ, Mendes PJ, Garcia MH, Baptista PV, Fernandes AR, Morais TS. Exploiting Co(III)-Cyclopentadienyl Complexes To Develop Anticancer Agents. Inorg Chem 2024; 63:5783-5804. [PMID: 38502532 PMCID: PMC10988555 DOI: 10.1021/acs.inorgchem.3c03696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
In recent years, organometallic complexes have attracted much attention as anticancer therapeutics aiming at overcoming the limitations of platinum drugs that are currently marketed. Still, the development of half-sandwich organometallic cobalt complexes remains scarcely explored. Four new cobalt(III)-cyclopentadienyl complexes containing N,N-heteroaromatic bidentate, and phosphane ligands were synthesized and fully characterized by elemental analysis, spectroscopic techniques, and DFT methods. The cytotoxicity of all complexes was determined in vitro by the MTS assay in colorectal (HCT116), ovarian (A2780), and breast (MDA-MB-231 and MCF-7) human cancer cell lines and in a healthy human cell line (fibroblasts). The complexes showed high cytotoxicity in cancer cell lines, mostly due to ROS production, apoptosis, autophagy induction, and disruption of the mitochondrial membrane. Also, these complexes were shown to be nontoxic in vivo in an ex ovo chick embryo yolk sac membrane (YSM) assay.
Collapse
Affiliation(s)
- João Franco Machado
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sandra Cordeiro
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, NOVA
School of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2819-516 Caparica, Portugal
| | - Joana N. Duarte
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Paulo J. Costa
- BioISI
− Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Paulo J. Mendes
- LAQV-REQUIMTE
(Polo de Évora), Escola de Ciências e Tecnologia, Universidade de Évora, R. Romão Ramalho 59, 7000-671 Évora, Portugal
| | - Maria Helena Garcia
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro V. Baptista
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, NOVA
School of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2819-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, NOVA
School of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2819-516 Caparica, Portugal
| | - Tânia S. Morais
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
5
|
AlSalhi MS, Oza G, Castillo-Maldonado I, Sharma A. Evaluation of antimicrobial, antioxidant, and anti-inflammatory abilities of sustainably synthesized Co3O4 NPs. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 56:103025. [DOI: 10.1016/j.bcab.2024.103025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS. Prevalence of Cobalt in the Environment and Its Role in Biological Processes. BIOLOGY 2023; 12:1335. [PMID: 37887045 PMCID: PMC10604320 DOI: 10.3390/biology12101335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
Cobalt (Co) is an essential trace element for humans and other animals, but high doses can be harmful to human health. It is present in some foods such as green vegetables, various spices, meat, milk products, seafood, and eggs, and in drinking water. Co is necessary for the metabolism of human beings and animals due to its key role in the formation of vitamin B12, also known as cobalamin, the biological reservoir of Co. In high concentrations, Co may cause some health issues such as vomiting, nausea, diarrhea, bleeding, low blood pressure, heart diseases, thyroid damage, hair loss, bone defects, and the inhibition of some enzyme activities. Conversely, Co deficiency can lead to anorexia, chronic swelling, and detrimental anemia. Co nanoparticles have different and various biomedical applications thanks to their antioxidant, antimicrobial, anticancer, and antidiabetic properties. In addition, Co and cobalt oxide nanoparticles can be used in lithium-ion batteries, as a catalyst, a carrier for targeted drug delivery, a gas sensor, an electronic thin film, and in energy storage. Accumulation of Co in agriculture and humans, due to natural and anthropogenic factors, represents a global problem affecting water quality and human and animal health. Besides the common chelating agents used for Co intoxication, phytoremediation is an interesting environmental technology for cleaning up soil contaminated with Co. The occurrence of Co in the environment is discussed and its involvement in biological processes is underlined. Toxicological aspects related to Co are also examined in this review.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| |
Collapse
|
7
|
Prakash A, Sur S, Dave V, Sharma P, Das S, Roy P, Hegde G. Green synthesized cobalt nanoparticles from Trianthema portulacastrum L. as a novel antimicrobials and antioxidants. Prep Biochem Biotechnol 2023; 54:328-342. [PMID: 37493403 DOI: 10.1080/10826068.2023.2238306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Trianthema portulacastrum is a dietary and medicinal plant that has gained substantial importance due to its pharmacological properties. This plant was used for its various healing properties since the ancient period in ayurvedic system of medicine. The green synthesis technique is an eco-friendly as well as cost effective technique which can produce more biocompatible nanoparticles when compared with those fabricated by physio-chemical methods. Therefore, nanoparticles produced by green synthesis are credible alternatives to those which are produced by conventional synthesis techniques. This research mainly aims to produce nanoparticles with the methanolic leaf extract of T. portulacastrum. The optimized nanoparticles were further analyzed for anti-fungal, anti-bacterial and antioxidant properties. Disk diffusion assay was used for the determination of the antimicrobial property and on the other hand, DPPH radical scavenging assay as well as hydrogen peroxide scavenging activity proved the antioxidant property of the formulation. The study revealed that Escherichia coli (gram negative strain) shows greater zone of inhibition when compared with Bacillus subtilis (gram positive bacteria). The nanoparticles have also been reported to show significant anti-fungal activity against the strains of Aspergillus niger and Fusarium oxysporum which proves its desirability for its further use against both bacterial as well as fungal infections. The novel formulation can be explored dually as antimicrobial and antioxidant agent.
Collapse
Affiliation(s)
- Anand Prakash
- Department of Bio-science and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Srija Sur
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata, India
| | - Vivek Dave
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya, India
| | - Prashansa Sharma
- Department of Home Science, Mahila Mahavidhyala, Banaras Hindu University, India
| | - Suvadra Das
- Department of Chemistry, University of Engineering and Management, Kolkata, India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, India
| | - Gurumurthy Hegde
- Centre for Advanced Research and Development (CARD), CHRIST (Deemed to be University), Bengaluru, India
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, India
| |
Collapse
|