1
|
Pravin NJ, Kavalapure RS, Alegaon SG, Gharge S, Ranade SD. Indoles as promising Therapeutics: A review of recent drug discovery efforts. Bioorg Chem 2025; 154:108092. [PMID: 39740309 DOI: 10.1016/j.bioorg.2024.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/07/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Indole, a fundamental heterocyclic core, has emerged as a cornerstone in the medicinal chemistry due to its diverse biological activities and structural versatility. This aromatic compound, present in natural as well as synthetic compounds, offers a versatile platform for the drug discovery. By strategically incorporating functional groups or pharmacophores, researchers can tailor indole-derivatives to target a wide range of diseases. This review delves into the multifaceted applications of indole derivatives, highlighting their potential as therapeutic agents for cancer, diabetes, depression, Alzheimer's diseases, Parkinson's disease, etc. emphasizing how indole derivatives can enhance potency and selectivity. By understanding the structure-activity relationship of indole compounds, scientists can develop innovative drug candidates with improved therapeutic profiles. The review highlights the diverse nature of indole-based derivatives along with the structure-activity relationshipThe current review comprehensively covers the advancements and developments in the field over the past seven years, specifically from 2017 to 2024. This timeframe was selected to provide an up-to-date and thorough analysis of recent progress, capturing significant trends, breakthroughs, and emerging insights within the domain. By focusing on this period, the review ensures relevance and highlights the evolving landscape of research, offering a detailed synthesis of key findings and their implications for future studies.
Collapse
Affiliation(s)
- Naik Jui Pravin
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Rohini S Kavalapure
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India.
| | - Shankar G Alegaon
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Shankar Gharge
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| | - Shriram D Ranade
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India
| |
Collapse
|
2
|
Xu X, Li X, Chen S, Liang Y, Zhang C, Huang Y. Simultaneous Qualitative and Quantitative Analyses of 41 Constituents in Uvaria macrophylla Leaves Screen Antioxidant Quality-Markers Using Database-Affinity Ultra-High-Performance Liquid Chromatography with Quadrupole Orbitrap Tandem Mass Spectrometry. Molecules 2024; 29:4886. [PMID: 39459254 PMCID: PMC11510267 DOI: 10.3390/molecules29204886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
To date, no study has focused on Uvaria macrophylla leaves with various traditional efficiencies. This paper therefore applied a database affinity ultra-high-performance liquid chromatography with quadrupole Orbitrap tandem mass spectrometry (UHPLC-Q-Orbitrap-MS/MS) strategy to analyze the lyophilized aqueous extract of U. macrophylla leaves. Through database comparison and MS fragment elucidation, this study has putatively identified 41 constituents belonging to flavonoid, phenolic acid, steroid, and saccharide natural product classifications. Significantly, four groups of isomers (liquiritigenin vs. isoliquiritigenin vs. pinocembrin; oroxylin A vs. wogonin vs. galangin 3-methyl ether; isoquercitrin vs. hyperoside; protocatechuic acid vs. 2,5-dihydroxybenzoic acid) have been successfully distinguished from each other. All of 41 constituents were then subjected to a quantitative analysis based on linear regression equation established by the above UHPLC-Q-Orbitrap-MS/MS strategy and an ABTS+•-scavenging antioxidant assay. Finally, the chemical content was multiplied by the corresponding ABTS+•-scavenging percentage to calculate the antioxidant contribution. It was shown that the chemical contents of 41 constituents varied from 0.003 ± 0.000 to 14.418 ± 1.041 mg/g, and gallic acid showed the highest antioxidant contribution. Gallic acid is considered as a suitable antioxidant quality-marker (Q-marker) of U. macrophylla leaves. These findings have scientific implications for the resource development and quality control of U. macrophylla leaves.
Collapse
Affiliation(s)
- Xiaoqiong Xu
- College of Pharmacy, Gansu Medical University, Pingliang 744000, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.L.); (Y.H.)
| | - Shaoman Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.L.); (Y.H.)
| | - Yongbai Liang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.L.); (Y.H.)
| | - Chuanyang Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Yuhan Huang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (S.C.); (Y.L.); (Y.H.)
| |
Collapse
|
3
|
Rzepka Z, Bober-Majnusz K, Hermanowicz JM, Bębenek E, Chrobak E, Surażyński A, Wrześniok D. Assessment of the Lipophilicity of Indole Derivatives of Betulin and Their Toxicity in a Zebrafish Model. Molecules 2024; 29:4408. [PMID: 39339403 PMCID: PMC11434430 DOI: 10.3390/molecules29184408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
There are scientific studies indicating that the attachment of an indole moiety to the triterpene scaffold can lead to increased anticancer potential. Lipophilicity is one of the factors that may influence biological properties and is therefore an important parameter to determine for newly obtained compounds as drug candidates. In the present study, previously synthesized 3 and/or 28-indole-betulin derivatives were evaluated for lipophilicity by reversed-phase thin-layer chromatography. The experimental values of lipophilicity (logPTLC) were then subjected to correlation analysis with theoretical values of logP, as well as for selected physicochemical and pharmacokinetic parameters and anticancer activity. A toxicity test using zebrafish embryos and larvae was also conducted. High correlation was observed between the experimental and theoretical values of lipophilicity. We presented correlation equations and statistical parameters describing the relationships between logPTLC and several physicochemical and ADME parameters. We also revealed the lack of correlation between the experimental values of lipophilicity and anticancer activity. Moreover, experiments on zebrafish have confirmed no toxicity of the tested compounds, which was consistent with the results of the in silico toxicity analysis. The results demonstrated, using the example of indole derivatives of betulin, the utility of lipophilicity values in the context of predicting the biological activity of new compounds.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland;
| | - Katarzyna Bober-Majnusz
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland;
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (E.B.); (E.C.)
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (E.B.); (E.C.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland;
| |
Collapse
|
4
|
Tyagi R, Yadav K, Khanna A, Mishra SK, Sagar R. Efficient synthesis of indole-chalcones based glycohybrids and their anticancer activity. Bioorg Med Chem 2024; 109:117778. [PMID: 38870714 DOI: 10.1016/j.bmc.2024.117778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Indole based glycosides belong to the class of pharmacologically active molecules and found in diverse natural compounds. Herein, we report the synthesis of 1,2,3-triazole bridged chirally enriched diverse indole-chalcones based glycohybrids. Three series of glycohybrids were designed and efficiently synthesized using d-glucose, d-galactose and d-mannose derived 1-azido glycosides. The reactions sequence involved were, the synthesis of indole derived chalcones which were formed via Claisen-Schmidt condensation reaction and subsequently N-propargylation which leads to the production of N-propargylated indole-chalcones. The N-propargylated indole-chalcones get transformed into 1,2,3-triazole bridged indole-chalcone based glycohybrids by reacting with 1-azido sugar glycosides under click-chemistry reaction conditions. Further, the biological activity of synthesized glycohybrids (n = 27) was assessed in-vitro against MDA-MB231, MCF-7, MDA-MB453 cancer, and MCF-10A normal cell lines. The selected compounds showed potent anti-oncogenic properties against MCF-7 and MDA-MB231 breast cancer cell line with IC50 values of 1.05 µM and 11.40 µM respectively, with very good selectivity index (SI > 161). The active compounds show better binding affinity as compared to co-crystallized inhibitor 1-(tert-butyl)-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP1) with HCK (PTKs) proteins in molecular docking studies.
Collapse
Affiliation(s)
- Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kanchan Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sunil K Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT-BHU), Varanasi 221005, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Bębenek E, Rzepka Z, Hermanowicz JM, Chrobak E, Surażyński A, Beberok A, Wrześniok D. Synthesis, Pharmacokinetic Profile, Anticancer Activity and Toxicity of the New Amides of Betulonic Acid-In Silico and In Vitro Study. Int J Mol Sci 2024; 25:4517. [PMID: 38674101 PMCID: PMC11050400 DOI: 10.3390/ijms25084517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Betulonic acid (B(O)A) is a pentacyclic lupane-type triterpenoid that widely exists in plants. There are scientific reports indicating anticancer activity of B(O)A, as well as the amides and esters of this triterpenoid. In the first step of the study, the synthesis of novel amide derivatives of B(O)A containing an acetylenic moiety was developed. Subsequently, the medium-soluble compounds (EB171 and EB173) and the parent compound, i.e., B(O)A, were investigated for potential cytotoxic activity against breast cancer (MCF-7 and MDA-MB-231) and melanoma (C32, COLO 829 and A375) cell lines, as well as normal human fibroblasts. Screening analysis using the WST-1 test was applied. Moreover, the lipophilicity and ADME parameters of the obtained derivatives were determined using experimental and in silico methods. The toxicity assay using zebrafish embryos and larvae was also performed. The study showed that the compound EB171 exhibited a significant cytotoxic effect on cancer cell lines: MCF-7, A-375 and COLO 829, while it did not affect the survival of normal cells. Moreover, studies on embryos and larvae showed no toxicity of EB171 in an animal model. Compared to EB171, the compound EB173 had a weaker effect on all tested cancer cell lines and produced less desirable effects against normal cells. The results of the WST-1 assay obtained for B(O)A revealed its strong cytotoxic activity on the examined cancer cell lines, but also on normal cells. In conclusion, this article describes new derivatives of betulonic acid-from synthesis to biological properties. The results allowed to indicate a promising direction for the functionalization of B(O)A to obtain derivatives with selective anticancer activity and low toxicity.
Collapse
Affiliation(s)
- Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (E.B.); (E.C.)
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (Z.R.); (A.B.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland;
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (E.B.); (E.C.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (Z.R.); (A.B.)
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska, 41-200 Sosnowiec, Poland; (Z.R.); (A.B.)
| |
Collapse
|
6
|
Munawar S, Zahoor AF, Hussain SM, Ahmad S, Mansha A, Parveen B, Ali KG, Irfan A. Steglich esterification: A versatile synthetic approach toward the synthesis of natural products, their analogues/derivatives. Heliyon 2024; 10:e23416. [PMID: 38170008 PMCID: PMC10758822 DOI: 10.1016/j.heliyon.2023.e23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The exploitation of natural products and their analogues in the field of pharmacology has been regarded as of great importance. It can be attributed to the fact that these scaffolds exhibit diverse chemical properties, distinct biological activities and zenith specificity in their biochemical processes, enabling them to act as favorable structures for lead compounds. The synthesis of natural products has been a crafty and hard-to-achieve task. Steglich esterification reaction has played a significant role in that area. It is a mild and efficient technique for constructing ester linkages. This technique involves the establishment of ester moiety via a carbodiimide-based condensation of a carboxylic acid with an alcohol, thiol or an amine catalyzed by dimethyl aminopyridine (DMAP). Specifically, labile reagents with multiple reactive sites are esterified efficiently with the classical and modified Steglich esterification conditions, which accounts for their synthetic utility. This review encloses the performance of the Steglich esterification reaction in forging the ester linkage for executing the total synthesis of natural products and their derivatives since 2018.
Collapse
Affiliation(s)
- Saba Munawar
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, 38000, Faisalabad, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| |
Collapse
|
7
|
Madej M, Gola J, Chrobak E. Synthesis, Pharmacological Properties, and Potential Molecular Mechanisms of Antitumor Activity of Betulin and Its Derivatives in Gastrointestinal Cancers. Pharmaceutics 2023; 15:2768. [PMID: 38140110 PMCID: PMC10748330 DOI: 10.3390/pharmaceutics15122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Gastrointestinal (GI) cancers are an increasingly common type of malignancy, caused by the unhealthy lifestyles of people worldwide. Limited methods of treatment have prompted the search for new compounds with antitumor activity, in which betulin (BE) is leading the way. BE as a compound is classified as a pentacyclic triterpene of the lupane type, having three highly reactive moieties in its structure. Its mechanism of action is based on the inhibition of key components of signaling pathways associated with proliferation, migration, interleukins, and others. BE also has a number of biological properties, i.e., anti-inflammatory, hepatoprotective, neuroprotective, as well as antitumor. Due to its poor bioavailability, betulin is subjected to chemical modifications, obtaining derivatives with proven enhanced pharmacological and pharmacokinetic properties as a result. The method of synthesis and substituents significantly influence the effect on cells and GI cancers. Moreover, the cytotoxic effect is highly dependent on the derivative as well as the individual cell line. The aim of this study is to review the methods of synthesis of BE and its derivatives, as well as its pharmacological properties and molecular mechanisms of action in colorectal cancer, hepatocellular carcinoma, gastric cancer, and esophageal cancer neoplasms.
Collapse
Affiliation(s)
- Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
8
|
Wang R, Huang R, Yuan Y, Wang Z, Shen K. The anti-breast cancer potential of indole/isatin hybrids. Arch Pharm (Weinheim) 2023; 356:e2300402. [PMID: 37650315 DOI: 10.1002/ardp.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Breast cancer (BC) is one of the most prevalent malignancies and the major contributor to cancer mortality in women globally, with a high degree of heterogeneity and a dismal prognosis. As drug resistance is responsible for most BC fatalities and advanced BC is currently considered incurable, finding innovative anti-BC chemotherapeutics is urgently required. Indole and its analog isatin (indole-1H-2,3-dione) are prominent pharmacophores in the development of novel medications, and their derivatives exhibit strong anticancer activities, also against BC. In particular, indole/isatin hybrids exhibit significant potency against BC including multidrug-resistant forms and excellent selectivity by influencing a variety of biological targets associated with the disease, supplying helpful building blocks for the identification of potential new BC treatment options. This review includes articles from 2020 to the present and provides insights into the in vitro and in vivo anti-BC potential, molecular mechanisms, and structure-activity relationships (SARs) of indole/isatin hybrids that may be helpful in the development of innovative anti-BC chemotherapeutics.
Collapse
Affiliation(s)
- Ruo Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaofeng Yuan
- Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou, China
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|