1
|
Januskaite P, Goyanes A, Orlu M, Basit AW. Sex-specific formulations of doxazosin mesylate via direct powder extrusion 3D printing. Drug Deliv Transl Res 2025:10.1007/s13346-025-01862-4. [PMID: 40263229 DOI: 10.1007/s13346-025-01862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2025] [Indexed: 04/24/2025]
Abstract
Males and females are known to exhibit significant differences in drug pharmacokinetics and pharmacodynamics, which are still overlooked in pharmaceutical research and development. These disparities contribute to adverse effects and increased mortality in females, highlighting the critical need for sex-specific formulations. Extended-release formulations of doxazosin mesylate, an alpha blocker used to treat hypertension, have shown significant sex-based differences in pharmacokinetics, leading to heightened adverse effects in females and rendering current titration recommendations impractical. This study explored the potential of a 3D printing (3DP) technology, direct powder extrusion (DPE), for producing personalised, sex-specific doses of doxazosin mesylate. A simple three component formulation was made composed of hydroxypropyl cellulose (HPC) polymer Klucel JF, D-mannitol, and doxazosin mesylate. Extended-release printlets of varying doses (1, 2, and 3 mg) were manufactured from a single 1% w/w doxazosin pharma-ink batch, enabling easy dose personalisation by adjusting the printlet dimensions. The use of a single pharma-ink supports the technology's ease of use in a pharmacy setting, by eliminating frequent pharma-ink changes during the pharmaceutical compounding process. In vitro dissolution testing revealed an extended drug release profile, influenced by surface-area-to-volume (SA: V) ratios. Introducing channels in larger printlets standardized the SA: V ratios, enhancing release profile uniformity. Release kinetics followed the Hixson-Crowell and Korsmeyer-Peppas models, indicating diffusion and polymer swelling mechanisms. This work highlights the capability of DPE 3DP for creating personalized, extended-release oral dosage forms, supporting precise dose customization for patient-specific therapy. Graphical Abstract.
Collapse
Affiliation(s)
- Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK.
- FABRX Artificial Intelligence, Calle Enrique Vidal Abascal 7, Santiago de Compostela, 15702, Spain.
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK.
| |
Collapse
|
2
|
Monteil M, Sanchez-Ballester NM, Aubert A, Gimello O, Begu S, Soulairol I. HME coupled with FDM 3D printing of a customized oral solid form to treat pediatric epilepsy. Int J Pharm 2025; 673:125345. [PMID: 39952419 DOI: 10.1016/j.ijpharm.2025.125345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Interest in hot-melt extrusion (HME) and fused deposition material (FDM) printing has increased in recent years, for the production of tailored medications for patients with specific requirements, such as pediatrics. Liquid forms are often preferred for children but these forms are less stable than oral solid forms (such as tablets or powder), requiring preservative not always suitable for children. Then, the aim of this study is to develop a dose-adapted dispersible 3D printed forms using HME with FDM to treat pediatric epilepsy. Polyethylene oxide (PEO)-based 3D printed forms were developed with sodium valproate (VAL) as model drug at different concentrations. The effects of polyethylene glycol (PEG)'s molecular weight (PEG6K and PEG35K) used as plasticizer on the formulations' mechanical, thermal and rheological properties were investigated. Formulation with 10 % (w/w) of VAL were printed with PEG6K and PEG35K, while only PEG35K was suitable for extruding and printing a formulation containing 30 % (w/w) of VAL due to its rheological properties. Steric exclusion chromatography coupled with refraction index was used to quantify VAL content, indicating uniform concentration in the filament after extrusion. Dissolution test in acidic media display over 80 % of VAL released within 20 to 25 min, reaching the Eur. Ph. Criteria of a rapid release. The outcomes of this study present suitable formulations to produce personalized dispersible form using HME with FDM 3D printing to treat pediatric epilepsy (1 month to 4 years old patients with dosage from 18 to 247 mg/kg/day) for the treatment of epilepsy.
Collapse
Affiliation(s)
- M Monteil
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - N M Sanchez-Ballester
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - A Aubert
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - O Gimello
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - S Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - I Soulairol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| |
Collapse
|
3
|
Bernatoniene J, Stabrauskiene J, Kazlauskaite JA, Bernatonyte U, Kopustinskiene DM. The Future of Medicine: How 3D Printing Is Transforming Pharmaceuticals. Pharmaceutics 2025; 17:390. [PMID: 40143052 PMCID: PMC11946218 DOI: 10.3390/pharmaceutics17030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Three-dimensional printing technology is transforming pharmaceutical manufacturing by shifting from conventional mass production to additive manufacturing, with a strong emphasis on personalized medicine. The integration of bioinks and AI-driven optimization is further enhancing this innovation, enabling drug production with precise dosages, tailored drug-release profiles, and unique multi-drug combinations that respond to individual patient needs. This advancement is significantly impacting healthcare by accelerating drug development, encouraging innovative pharmaceutical designs, and enhancing treatment efficacy. Traditional pharmaceutical manufacturing follows a one-size-fits-all approach, which often fails to meet the specific requirements of patients with unique medical conditions. In contrast, 3D printing, coupled with bioink formulations, allows for on-demand drug production, reducing dependency on large-scale manufacturing and storage. AI-powered design and process optimization further refine dosage forms, printability, and drug release mechanisms, ensuring precision and efficiency in drug manufacturing. These advancements have the potential to lower overall healthcare costs while improving patient adherence to medication regimens. This review explores the potential, challenges, and environmental benefits of 3D pharmaceutical printing, positioning it as a key driver of next-generation personalized medicine.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.S.); (J.A.K.); (U.B.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Jolita Stabrauskiene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.S.); (J.A.K.); (U.B.)
| | - Jurga Andreja Kazlauskaite
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.S.); (J.A.K.); (U.B.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Urte Bernatonyte
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.S.); (J.A.K.); (U.B.)
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| |
Collapse
|
4
|
Pawar A, Karanwad T, Banerjee S. 3D printed tinidazole tablets coupled with melt-extrusion techniques for formulating child friendly medicines. Eur J Pharm Biopharm 2024; 203:114471. [PMID: 39186960 DOI: 10.1016/j.ejpb.2024.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
This study investigates the feasibility of fabrication of poly(1-vinyl-2-pyrrolidone) (Kollidon®25)-mediated filaments for producing tinidazole (TNZ)-loaded, customizable, child-friendly tablets (with varying shapes and sizes) using hot melt extrusion (HME) coupled with fused deposition modeling (FDM) technology. Kollidon®25, chosen for its ability to enhance the dissolution of TNZ (a BCS Class II drug), was evaluated for polymer-drug compatibility through Hansen solubility, polarity, and interaction parameter analyses, confirming good miscibility and affinity between TNZ and Kollidon®25. Placebo- and TNZ-loaded filaments were prepared in different ratios using HME, followed by the development of 3D-printed tablets via FDM. The fabricated batches of placebo and TNZ-loaded 3D tablets were characterized, and it was found that they had an average weight variation of 270.41 ± 7.44 mg and 270.87 ± 9.33 mg, hardness of 155.01 ± 11.79 N and 265.3 ± 7.62 N, and friability of 0.1583 ± 0.0011 % and 0.2254 ± 0.0013 %. Amorphization was confirmed by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) analysis. Scanning electron microscopy (SEM) revealed a layer-by-layer pattern with tiny fractures on the tablet surfaces, which enhanced media penetration, resulting in improved dissolution profiles. The TNZ release profile showed complete 100 % release within 2.0 h in a gastric acidic medium. These findings support the potential of Kollidon®25 to create customizable, child-friendly, 3D-printed dosage forms with different shapes and sizes for TNZ delivery, offering a unique approach to paediatric medications.
Collapse
Affiliation(s)
- Abhishek Pawar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, (NIPER)-Guwahati, Changsari, Assam 781101, India
| | - Tukaram Karanwad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, (NIPER)-Guwahati, Changsari, Assam 781101, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, (NIPER)-Guwahati, Changsari, Assam 781101, India.
| |
Collapse
|
5
|
Monteil M, M Sanchez-Ballester N, Devoisselle JM, Begu S, Soulairol I. Regulations on excipients used in 3D printing of pediatric oral forms. Int J Pharm 2024; 662:124402. [PMID: 38960343 DOI: 10.1016/j.ijpharm.2024.124402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
A promising solution to customize oral drug formulations for the pediatric population has been found in the use of 3D printing, in particular Fused Deposition Modeling (FDM) and Semi-Solid Extrusion (SSE). Although formulation development is currently limited to research studies, the rapid advances in 3D printing warn of the need for regulation. Indeed, even if the developed formulations include pharmaceutical excipients used to produce traditional oral forms such as tablets, the quantities of excipients used must be adapted to the process. Therefore, the aim of this literature review is to provide a synthesis of the available safety data on excipients mainly used in extrusion-based 3D printing for the pediatric population. A total of 39 relevant articles were identified through two scientific databases (PubMed and Science Direct). Then, groups of the main excipients were listed including their general information (name, chemical structure and pharmaceutical use) and a synthesis of the available safety data extracted from several databases. Finally, the role of the excipients in 3D printing, the amount used in formulations and the oral dose administered per form are presented.
Collapse
Affiliation(s)
- M Monteil
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - N M Sanchez-Ballester
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | | | - S Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - I Soulairol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| |
Collapse
|
6
|
Kreft K, Fanous M, Möckel V. The potential of three-dimensional printing for pediatric oral solid dosage forms. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:229-248. [PMID: 38815205 DOI: 10.2478/acph-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 06/01/2024]
Abstract
Pediatric patients often require individualized dosing of medicine due to their unique pharmacokinetic and developmental characteristics. Current methods for tailoring the dose of pediatric medications, such as tablet splitting or compounding liquid formulations, have limitations in terms of dosing accuracy and palatability. This paper explores the potential of 3D printing as a solution to address the challenges and provide tailored doses of medication for each pediatric patient. The technological overview of 3D printing is discussed, highlighting various 3D printing technologies and their suitability for pharmaceutical applications. Several individualization options with the potential to improve adherence are discussed, such as individualized dosage, custom release kinetics, tablet shape, and palatability. To integrate the preparation of 3D printed medication at the point of care, a decentralized manufacturing model is proposed. In this setup, pharmaceutical companies would routinely provide materials and instructions for 3D printing, while specialized compounding centers or hospital pharmacies perform the printing of medication. In addition, clinical opportunities of 3D printing for dose-finding trials are emphasized. On the other hand, current challenges in adequate dosing, regulatory compliance, adherence to quality standards, and maintenance of intellectual property need to be addressed for 3D printing to close the gap in personalized oral medication.
Collapse
Affiliation(s)
- Klemen Kreft
- 1Lek Pharmaceuticals d.d., a Sandoz Company, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
7
|
Rodríguez-Pombo L, Martínez-Castro L, Xu X, Ong JJ, Rial C, García DN, González-Santos A, Flores-González J, Alvarez-Lorenzo C, Basit AW, Goyanes A. Simultaneous fabrication of multiple tablets within seconds using tomographic volumetric 3D printing. Int J Pharm X 2023; 5:100166. [PMID: 36880028 PMCID: PMC9984549 DOI: 10.1016/j.ijpx.2023.100166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
3D printing is driving a shift in patient care away from a generalised model and towards personalised treatments. To complement fast-paced clinical environments, 3D printing technologies must provide sufficiently high throughputs for them to be feasibly implemented. Volumetric printing is an emerging 3D printing technology that affords such speeds, being capable of producing entire objects within seconds. In this study, for the first time, rotatory volumetric printing was used to simultaneously produce two torus- or cylinder-shaped paracetamol-loaded Printlets (3D printed tablets). Six resin formulations comprising paracetamol as the model drug, poly(ethylene glycol) diacrylate (PEGDA) 575 or 700 as photoreactive monomers, water and PEG 300 as non-reactive diluents, and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as the photoinitiator were investigated. Two printlets were successfully printed in 12 to 32 s and exhibited sustained drug release profiles. These results support the use of rotary volumetric printing for efficient and effective manufacturing of various personalised medicines at the same time. With the speed and precision it affords, rotatory volumetric printing has the potential to become one of the most promising alternative manufacturing technologies in the pharmaceutical industry.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Laura Martínez-Castro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Carlos Rial
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Daniel Nieto García
- Complex Tissue Regeneration Department, MERLIN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Alejandro González-Santos
- Facultad de Física, Centro de Investigación en Tecnologías Inteligentes (CITIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Julian Flores-González
- Facultad de Física, Centro de Investigación en Tecnologías Inteligentes (CITIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.,FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.,FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| |
Collapse
|
8
|
Milián-Guimerá C, McCabe R, Thamdrup LHE, Ghavami M, Boisen A. Smart pills and drug delivery devices enabling next generation oral dosage forms. J Control Release 2023; 364:S0168-3659(23)00702-2. [PMID: 39491170 DOI: 10.1016/j.jconrel.2023.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Oral dosage forms are the preferred solution for systemic treatment and prevention of disease conditions. However, traditional dosage forms face challenges regarding treatment adherence and delivery of biologics. Oral therapies that require frequent administrations face difficulties with patient compliance. In addition, only a few peptide- and protein-based drugs have been commercialized for oral administration so far, presenting a bioavailability that is generally low. Therefore, research and development on novel formulation strategies for oral drug delivery has bloomed massively in the last decade to overcome these challenges. On the one hand, approaches based on lumen-release of drugs such as 3D-printed capsules and prolonged gastric residence dosage forms have been explored to offer personalized medicine to the patient and reduce frequent dosing of small drug compounds that are currently in the market as powdered tablet or capsules. On the other hand, strategies based on mucus interfacing such as gastrointestinal patches, or even epithelium injections have been investigated in order to enhance the permeability of biologic macromolecules, which are mostly commercialized in the form of subcutaneous injections. Despite the fact that these methods are at an early development stage, promising results have been revealed in terms of personalized medicine and improved bioavailability. In this review, we offer a critical overview of novel ingestible millimeter-sized devices and technologies for oral drug delivery that are currently used in the clinic as well as those that could emerge on the market in a not too distant future.
Collapse
Affiliation(s)
- Carmen Milián-Guimerá
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Reece McCabe
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mahdi Ghavami
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
9
|
Rosch M, Gutowski T, Baehr M, Eggert J, Gottfried K, Gundler C, Nürnberg S, Langebrake C, Dadkhah A. Development of an immediate release excipient composition for 3D printing via direct powder extrusion in a hospital. Int J Pharm 2023; 643:123218. [PMID: 37467818 DOI: 10.1016/j.ijpharm.2023.123218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
3D printing offers the possibility to prepare personalized tablets on demand, making it an intriguing technology for hospital pharmacies. For the implementation of 3D-printed tablets into the digital Closed Loop Medication Management system, the required tablet formulation and development of the manufacturing process as well as the pharmaceutical validation were conducted. The goal of the formulation development was to enable an optimal printing process and rapid dissolution of the printed tablets for the selected model drugs Levodopa/Carbidopa. The 3D printed tablets were prepared by direct powder extrusion. Printability, thermal properties, disintegration, dissolution, physical properties and storage stability were investigated by employing analytical methods such as HPLC-UV, DSC and TGA. The developed formulation shows a high dose accuracy and an immediate drug release for Levodopa. In addition, the tablets exhibit high crushing strength and very low friability. Unfortunately, Carbidopa did not tolerate the printing process. This is the first study to develop an immediate release excipient composition via direct powder extrusion in a hospital pharmacy setting. The developed process is suitable for the implementation in Closed-Loop Medication Management systems in hospital pharmacies and could therefore contribute to medication safety.
Collapse
Affiliation(s)
- Moritz Rosch
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Gutowski
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Baehr
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Eggert
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl Gottfried
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Gundler
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sylvia Nürnberg
- Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Langebrake
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrin Dadkhah
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
10
|
Abdelhamid M, Corzo C, Ocampo AB, Maisriemler M, Slama E, Alva C, Lochmann D, Reyer S, Freichel T, Salar-Behzadi S, Spoerk M. Mechanically promoted lipid-based filaments via composition tuning for extrusion-based 3D-printing. Int J Pharm 2023; 643:123279. [PMID: 37524255 DOI: 10.1016/j.ijpharm.2023.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Lipid excipients are favorable materials in pharmaceutical formulations owing to their natural, biodegradable, low-toxic and solubility/permeability enhancing properties. The application of these materials with advanced manufacturing platforms, particularly filament-based 3D-printing, is attractive for personalized manufacturing of thermolabile drugs. However, the filament's weak mechanical properties limit their full potential. In this study, highly flexible filaments were extruded using PG6-C16P, a lipid-based excipient belonging to the group of polyglycerol esters of fatty acids (PGFAs), based on tuning the ratio between its major and minor composition fractions. Increasing the percentage of the minor fractions in the system was found to enhance the relevant mechanical filament properties by 50-fold, guaranteeing a flawless 3D-printability. Applying a novel liquid feeding approach further improved the mechanical filament properties at lower percentage of minor fractions, whilst circumventing the issues associated with the standard extrusion approach such as low throughput. Upon drug incorporation, the filaments retained high mechanical properties with a controlled drug release pattern. This work demonstrates PG6-C16 P as an advanced lipid-based material and a competitive printing excipient that can empower filament-based 3D-printing.
Collapse
Affiliation(s)
- Moaaz Abdelhamid
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | | | | | - Eyke Slama
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Carolina Alva
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | | | | | | | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical, Technology and Biopharmacy, Graz, Austria.
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
11
|
Yang TL, Stogiannari M, Janeczko S, Khoshan M, Lin Y, Isreb A, Habashy R, Giebułtowic J, Peak M, Alhnan MA. Towards Point-of-Care Manufacturing and Analysis of Immediate-Release 3D Printed Hydrocortisone Tablets for The Treatment of Congenital Adrenal Hyperplasia. Int J Pharm 2023:123072. [PMID: 37230368 DOI: 10.1016/j.ijpharm.2023.123072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Hydrocortisone (HC) is the preferred drug in children with congenital adrenal hyperplasia due to its lower potency as well as fewer reports of side effects. Fused deposition modelling (FDM) 3D printing holds the potential to produce low-cost personalised doses for children at the point of care. However, the compatibility of the thermal process to produce immediate-release bespoke tablets for this thermally labile active is yet to be established. This work aims to develop immediate-release HC tablets using FDM 3D printing and assess drug contents as a critical quality attribute (CQA) using a compact, low-cost near-infrared (NIR) spectroscopy as a process analytical technology (PAT). The FDM 3D printing temperature (140 °C) and drug concentration in the filament (10%-15% w/w) were critical parameters to meet the compendial criteria for drug contents and impurities. Using a compact low-cost NIR spectral device over a wavelength of 900-1700 nm, the drug contents of 3D printed tablets were assessed. Partial least squares (PLS) regression was used to develop individual calibration models to detect HC content in 3D printed tablets of lower drug contents, small caplet design, and relatively complex formula. The models demonstrated the ability to predict HC concentrations over a wide concentration range (0-15% w/w), which was confirmed by HPLC as a reference method. Ultimately, the capability of the NIR model had preceding dose verification performance on HC tablets, with linearity (R2 = 0.981) and accuracy (RMSECV = 0.46%). In the future, the integration of 3DP technology with non-destructive PAT techniques will accelerate the adoption of on-demand, individualised dosing in a clinical setting.
Collapse
Affiliation(s)
- Tzuyi L Yang
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| | - Melpomeni Stogiannari
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| | - Sylwia Janeczko
- Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Marva Khoshan
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| | - Yueyuan Lin
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| | - Abdullah Isreb
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Joanna Giebułtowic
- Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Matthew Peak
- Paediatric Medicines Research Unit, Alder Hey Children's NHS Foundation Trust, Liverpool, L12 2AP
| | - Mohamed A Alhnan
- Centre for Pharmaceutical Medicine, Institute of Pharmaceutical Science, Kings College, London, UK
| |
Collapse
|
12
|
Ahmed MM, Fatima F, Alnami A, Alsenaidy M, Aodah AH, Aldawsari MF, Almutairy B, Anwer MK, Jafar M. Design and Characterization of Baricitinib Incorporated PLA 3D Printed Pills by Fused Deposition Modeling: An Oral Pill for Treating Alopecia Areata. Polymers (Basel) 2023; 15:polym15081825. [PMID: 37111972 PMCID: PMC10143920 DOI: 10.3390/polym15081825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to develop three-dimensional (3D) baricitinib (BAB) pills using polylactic acid (PLA) by fused deposition modeling. Two strengths of BAB (2 and 4% w/v) were dissolved into the (1:1) PEG-400 individually, diluting it with a solvent blend of acetone and ethanol (27.8:18:2) followed by soaking the unprocessed 200 cm~6157.94 mg PLA filament in the solvent blend acetone-ethanol. FTIR spectrums of the 3DP1 and 3DP2 filaments calculated and recognized drug encapsulation in PLA. Herein, 3D-printed pills showed the amorphousness of infused BAB in the filament, as indicated by DSC thermograms. Fabricated pills shaped like doughnuts increased the surface area and drug diffusion. The releases from 3DP1 and 3DP2 were found to be 43.76 ± 3.34% and 59.14 ± 4.54% for 24 h. The improved dissolution in 3DP2 could be due to the higher loading of BAB due to higher concentration. Both pills followed Korsmeyer-Peppas' order of drug release. BAB is a novel JAK inhibitor that U.S. FDA has recently approved to treat alopecia areata (AA). Therefore, the proposed 3D printed tablets can be easily fabricated with FDM technology and effectively used in various acute and chronic conditions as personalized medicine at an economical cost.
Collapse
Affiliation(s)
- Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Aisha Alnami
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alhussain H Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammed F Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Bjad Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| |
Collapse
|
13
|
Hoffmann L, Breitkreutz J, Quodbach J. Investigation of the degradation and in-situ amorphization of the enantiomeric drug escitalopram oxalate during Fused Deposition Modeling (FDM) 3D printing. Eur J Pharm Sci 2023; 185:106423. [PMID: 36918059 DOI: 10.1016/j.ejps.2023.106423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Hot-melt extrusion (HME) and subsequent FDM 3D printing offer great potential opportunities in the formulation development and production of customized oral dosage forms with poorly soluble drugs. However, thermal stress within these processes can be challenging for thermo-sensitive drugs. In this work, three different formulations were prepared to investigate the degradation and the solid state of the thermo-sensitive and poorly soluble drug escitalopram oxalate (ESC-OX) during the two heat-intensive processes HME and FDM 3D printing. For this purpose, hydroxypropyl methyl cellulose (HPMC) and basic butylated methacrylate copolymer (bPMMA) were chosen as polymers. DSC and XRD measurements revealed that ESC-OX is amorphous in the HPMC based formulations in both, extrudates and 3D printed tablets. In contrast, in-situ amorphization of the drug from crystalline state in bPMMA filaments was observed during FDM 3D printing. With regard to the content, it was found that degradation of ESC-OX in extrudates with bPMMA could be avoided and in 3D printed tablets almost fully reduced. Furthermore, a possible conversion into the R-enantiomer in the formulation with bPMMA could be excluded using a chiral column. Compared to the commercial product Cipralex®, drug release from extrudates and tablets with bPMMA was slower but still qualified as immediate drug release.
Collapse
Affiliation(s)
- Lena Hoffmann
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Julian Quodbach
- Department of Pharmaceutics, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|