1
|
Inoue H, Hamasaki T, Inoue K, Nakao A, Ebi N, Minomo H, Nagata I, Fujita M, Horai N. Comprehensive immunophenotyping reveals distinct tumor microenvironment alterations in anti-PD-1 sensitive and resistant syngeneic mouse model. Sci Rep 2025; 15:8311. [PMID: 40064915 PMCID: PMC11894063 DOI: 10.1038/s41598-025-91979-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The advent of immune checkpoint inhibitors targeting the PD-1/PD-L1 pathway has revolutionized cancer treatment, resulting in improved clinical outcomes. However, resistance remains a critical challenge. This study aimed to comparatively elucidate immunophenotypic changes in syngeneic mouse models sensitive (MC-38) or resistant (LLC1) to anti-PD-1 monoclonal antibody (mAb) treatment. In the sensitive MC-38 model, anti-PD-1 therapy increased dendritic cells (DCs) and macrophages, while decreasing myeloid-derived suppressor cells (MDSCs) within the tumor microenvironment. Enhanced expression of antigen presentation molecules (MHC I/II) and costimulatory molecules (CD80/CD86) was observed on tumor-associated DCs and macrophages. Tumor-infiltrating CD4+T, CD8+T, regulatory T, NK, and NKT cells also significantly increased. Importantly, treatment boosted lymphocyte cytotoxic potential, with perforin identified as a key marker of efficacy. Notably, perforin expression in CD4+T and NKT cells strongly negatively correlated with tumor volume. In contrast, the resistant LLC1 model exhibited minimal immunophenotypic changes upon treatment. These findings highlight critical immune modifications induced by anti-PD-1 therapy, particularly the role of perforin, and the DC/MDSC ratio in predicting therapeutic outcomes. This research offers valuable insights into potential predictive biomarkers and informs strategies to overcome resistance, emphasizing the complex interplay between anti-PD-1 treatment and the tumor microenvironment, ultimately aiming to improve immunotherapy response rates.
Collapse
Affiliation(s)
- Hiroyuki Inoue
- Department of Respiratory Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan.
| | - Takayuki Hamasaki
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan
| | - Kazuhiko Inoue
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan
| | - Akira Nakao
- Department of Respiratory Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Noriyuki Ebi
- Department of Respiratory Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Hirofumi Minomo
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan
| | - Ichiro Nagata
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan
| | - Masaki Fujita
- Department of Respiratory Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Naoto Horai
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan
- Incubation Center for Advanced Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
2
|
Heller LC, Shi G, Sales Conniff A, Singh J, Mannarino S, Synowiec J, Heller R. IL-12 and PD-1 peptide combination gene therapy for the treatment of melanoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102267. [PMID: 39176175 PMCID: PMC11339250 DOI: 10.1016/j.omtn.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
Interleukin-12 (IL-12) gene electrotransfer (GET) delivery is highly effective in inducing long-term, complete regression in mouse and human melanoma and other solid tumors. Therapeutic efficacy is enhanced by immune checkpoint inhibitors, and the combination of IL-12 plasmid GET (pIL-12 GET) and anti-programmed cell death protein 1 (PD-1) monoclonal antibodies has reached clinical trials. In this study, we designed peptides and plasmids encoding the mouse homologs of the pembrolizumab and nivolumab programmed cell death 1 ligand 1 (PD-L1) binding regions. We hypothesized that intratumor autocrine/paracrine peptide expression would block PD-1/PD-L1 binding and provide cancer patients with an effective and cost-efficient treatment alternative. We demonstrated that the mouse homolog to pembrolizumab was effective at blocking PD-1/PD-L1 in vitro. After intratumor plasmid delivery, both peptides bound PD-L1 on tumor cells. We established that plasmid DNA delivery to tumors in vivo or to tumor cells in vitro upregulated several immune modulators and PD-L1 mRNA and protein, potentiating this therapy. Finally, we tested the combination of pIL-12 GET therapy and peptide plasmids. We determined that pIL-12 GET therapeutic efficacy could be enhanced by combination with the plasmid encoding the pembrolizumab mouse homolog.
Collapse
Affiliation(s)
- Loree C. Heller
- Department of Medical Engineering, University of South Florida, Morsani College of Medicine and College of Engineering, 12901 Bruce B. Downs Blvd., MDC111, Tampa, FL 33612, USA
| | - Guilan Shi
- Department of Medical Engineering, University of South Florida, Morsani College of Medicine and College of Engineering, 12901 Bruce B. Downs Blvd., MDC111, Tampa, FL 33612, USA
| | - Amanda Sales Conniff
- Department of Medical Engineering, University of South Florida, Morsani College of Medicine and College of Engineering, 12901 Bruce B. Downs Blvd., MDC111, Tampa, FL 33612, USA
| | - Julie Singh
- Department of Medical Engineering, University of South Florida, Morsani College of Medicine and College of Engineering, 12901 Bruce B. Downs Blvd., MDC111, Tampa, FL 33612, USA
| | - Samantha Mannarino
- Department of Medical Engineering, University of South Florida, Morsani College of Medicine and College of Engineering, 12901 Bruce B. Downs Blvd., MDC111, Tampa, FL 33612, USA
| | - Jody Synowiec
- Department of Medical Engineering, University of South Florida, Morsani College of Medicine and College of Engineering, 12901 Bruce B. Downs Blvd., MDC111, Tampa, FL 33612, USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Morsani College of Medicine and College of Engineering, 12901 Bruce B. Downs Blvd., MDC111, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Shi G, Synowiec J, Singh J, Heller R. Modification of the tumor microenvironment enhances immunity with plasmid gene therapy. Cancer Gene Ther 2024; 31:641-648. [PMID: 38337037 PMCID: PMC11702831 DOI: 10.1038/s41417-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Local intratumor delivery with electroporation of low levels of plasmids encoding molecules, induces an antitumor effect without causing systemic toxicity. However, previous studies have predominately focused on the function of the delivered molecule encoded within the plasmid, and ignored the plasmid vector. In this study, we found vectors pUMVC3 and pVax1 induced upregulation of MHC class I (MHC-I) and PD-L1 on tumor cell surface. These molecules participate in a considerable number of immunoregulatory functions through their interactions with and activating inhibitory immune cell receptors. MHC molecules are well-known for their role in antigen (cross-) presentation, thereby functioning as key players in the communication between immune cells and tumor cells. Increased PD-L1 expression on tumor cells is an important monitor of tumor growth and the effectiveness of immune inhibitor therapy. Results from flow cytometry confirmed increased expression of MHC-I and PDL-1 on B16F10, 4T1, and KPC tumor cell lines. Preliminary animal data from tumor-bearing models, B16F10 melanoma, 4T1 breast cancer and KPC pancreatic cancer mouse models showed that tumor growth was attenuated after pUMVC3 intratumoral electroporation. Our data also documented that pSTAT1 signaling pathway might not be associated with plasmid vectors' function of upregulating MHC-I, PD-L1 on tumor cells.
Collapse
Affiliation(s)
- Guilan Shi
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Jody Synowiec
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Julie Singh
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
4
|
Ghasemi A, Martinez-Usatorre A, Li L, Hicham M, Guichard A, Marcone R, Fournier N, Torchia B, Martinez Bedoya D, Davanture S, Fernández-Vaquero M, Fan C, Janzen J, Mohammadzadeh Y, Genolet R, Mansouri N, Wenes M, Migliorini D, Heikenwalder M, De Palma M. Cytokine-armed dendritic cell progenitors for antigen-agnostic cancer immunotherapy. NATURE CANCER 2024; 5:240-261. [PMID: 37996514 PMCID: PMC10899110 DOI: 10.1038/s43018-023-00668-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023]
Abstract
Dendritic cells (DCs) are antigen-presenting myeloid cells that regulate T cell activation, trafficking and function. Monocyte-derived DCs pulsed with tumor antigens have been tested extensively for therapeutic vaccination in cancer, with mixed clinical results. Here, we present a cell-therapy platform based on mouse or human DC progenitors (DCPs) engineered to produce two immunostimulatory cytokines, IL-12 and FLT3L. Cytokine-armed DCPs differentiated into conventional type-I DCs (cDC1) and suppressed tumor growth, including melanoma and autochthonous liver models, without the need for antigen loading or myeloablative host conditioning. Tumor response involved synergy between IL-12 and FLT3L and was associated with natural killer and T cell infiltration and activation, M1-like macrophage programming and ischemic tumor necrosis. Antitumor immunity was dependent on endogenous cDC1 expansion and interferon-γ signaling but did not require CD8+ T cell cytotoxicity. Cytokine-armed DCPs synergized effectively with anti-GD2 chimeric-antigen receptor (CAR) T cells in eradicating intracranial gliomas in mice, illustrating their potential in combination therapies.
Collapse
Affiliation(s)
- Ali Ghasemi
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Amaia Martinez-Usatorre
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Luqing Li
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Mehdi Hicham
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Alan Guichard
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Rachel Marcone
- Agora Cancer Research Center, Lausanne, Switzerland
- Translational Data Science (TDS) Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Center, Lausanne, Switzerland
- Translational Data Science (TDS) Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Bruno Torchia
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Darel Martinez Bedoya
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Suzel Davanture
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mirian Fernández-Vaquero
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chaofan Fan
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Janzen
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yahya Mohammadzadeh
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Nahal Mansouri
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Mathias Wenes
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Denis Migliorini
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Oncology, Geneva University Hospital (HUG), Geneva, Switzerland
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- The M3 Research Center, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180), Eberhard Karls University, Tübingen, Germany
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| |
Collapse
|