1
|
Man S, Ren H, Li Y, Li J, Zou C, Khan AJ, Huang J, Xia Y, Jia S, Wang J, Liu X, Guo Z, Zhang Y, Rahman FU, Li X. In Vitro and In Vivo Anticancer Activities of Water-Soluble Ru(II)(η6- p-cymene) Complexes via Activating Apoptosis Central Regulators and Possibilities of New Antitumor Strategies in Triple Negative Breast Cancers. J Med Chem 2025; 68:2574-2592. [PMID: 39878058 DOI: 10.1021/acs.jmedchem.4c01699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
In this study, we synthesized 12 monofunctional tridentate ONS-donor salicylaldimine ligand (L)-based Ru(II) complexes with general formula [(Ru(L)(p-cymene)]+·Cl- (C1-C12), characterized by 1H NMR, 13C NMR, UV, FT-IR spectroscopy, HR-ESI mass spectrometry, and single-crystal X-ray analysis showing ligand's orientation around the Ru(II) center. All 12 of these 12 complexes were tested for their anticancer activities in multiple cancer cells. The superior antitumor efficacy of C2, C8, and C11 was demonstrated by reduced mitochondrial membrane potential, impaired proliferative capacity, and disrupted redox homeostasis, along with enhanced apoptosis through caspase-3 activation and downregulation of Bcl-2 expression. In the 4T1 breast cancer orthotopic mouse model, assessment of bioluminescence for metastatic spread, tumor burden, histopathological evaluation, immunohistochemistry (IHC), and hematological profiling and tissue Protein expression of caspase-3, cleaved caspase-3, TNF-α, and bcl-2 demonstrated that C8 treatment led to prolonged survival and suppressed tumor progression in triple negative breast cancer.
Collapse
Affiliation(s)
- Shad Man
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Haojie Ren
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yimiao Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Jiaqi Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Cheng Zou
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Abdul Jamil Khan
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jinxia Huang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yan Xia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Shuang Jia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Jie Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xing Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Zhao Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
- CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xinyu Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
2
|
Georg M, Legin AA, Hejl M, Jakupec MA, Becker J, Göttlich R. Synthesis and Antiproliferative Activity of Cisplatin-3-Chloropiperidine Conjugates. Chembiochem 2024:e202400519. [PMID: 39301577 DOI: 10.1002/cbic.202400519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
We report the synthesis and characterization of two novel cisplatin- alkylating agents conjugates. Combining a platinum based cytostatic agent with a sterically demanding alkylating agent could potentially induce further DNA damage, block cell repair mechanisms and keep the substrate active against resistant tumor cell lines. The 3-chloropiperidines utilized as ligands in this work are cyclic representatives of the N-mustard family and were not able to coordinate platinum on their own. The introduction of a second coordination site, in form of a pyridine moiety, led to the isolation of the desired conjugates. They were characterized with HRMS, CHN-analyses and XRD. We concluded this work by examining the cytotoxicity of the ligands and the obtained complexes with MTT assays in human cancer cell lines. While the ligands showed hardly any activity, the novel conjugates both displayed a high antiproliferative and cytotoxic potency in a panel of three cell lines. Moreover, both complexes were able to largely circumvent the acquired cisplatin resistance of A2780cisR ovarian cancer cells, both in the MTT assay and a flow-cytometric apoptosis assay.
Collapse
Affiliation(s)
- Mats Georg
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Anton A Legin
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Richard Göttlich
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
3
|
Getreuer P, Marretta L, Toyoglu E, Dömötör O, Hejl M, Prado-Roller A, Cseh K, Legin AA, Jakupec MA, Barone G, Terenzi A, Keppler BK, Kandioller W. Investigating the anticancer potential of 4-phenylthiazole derived Ru(II) and Os(II) metalacycles. Dalton Trans 2024; 53:5567-5579. [PMID: 38426897 DOI: 10.1039/d4dt00245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In this contribution we report the synthesis, characterization and in vitro anticancer activity of novel cyclometalated 4-phenylthiazole-derived ruthenium(II) (2a-e) and osmium(II) (3a-e) complexes. Formation and sufficient purity of the complexes were unambigiously confirmed by 1H-, 13C- and 2D-NMR techniques, X-ray diffractometry, HRMS and elemental analysis. The binding preferences of these cyclometalates to selected amino acids and to DNA models including G-quadruplex structures were analyzed. Additionally, their stability and behaviour in aqueous solutions was determined by UV-Vis spectroscopy. Their cellular accumulation, their ability of inducing apoptosis, as well as their interference in the cell cycle were studied in SW480 colon cancer cells. The anticancer potencies were investigated in three human cancer cell lines and revealed IC50 values in the low micromolar range, in contrast to the biologically inactive ligands.
Collapse
Affiliation(s)
- Paul Getreuer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
- Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Laura Marretta
- STEBICEF-Department, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Emine Toyoglu
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Orsolya Dömötör
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, 6720 Szeged, Hungary
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Alexander Prado-Roller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Klaudia Cseh
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Anton A Legin
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Giampaolo Barone
- STEBICEF-Department, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Alessio Terenzi
- STEBICEF-Department, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| |
Collapse
|
4
|
D’Amato A, Mariconda A, Iacopetta D, Ceramella J, Catalano A, Sinicropi MS, Longo P. Complexes of Ruthenium(II) as Promising Dual-Active Agents against Cancer and Viral Infections. Pharmaceuticals (Basel) 2023; 16:1729. [PMID: 38139855 PMCID: PMC10747139 DOI: 10.3390/ph16121729] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Poor responses to medical care and the failure of pharmacological treatment for many high-frequency diseases, such as cancer and viral infections, have been widely documented. In this context, numerous metal-based substances, including cisplatin, auranofin, various gold metallodrugs, and ruthenium complexes, are under study as possible anticancer and antiviral agents. The two Ru(III) and Ru(II) complexes, namely, BOLD-100 and RAPTA-C, are presently being studied in a clinical trial and preclinical studies evaluation, respectively, as anticancer agents. Interestingly, BOLD-100 has also recently demonstrated antiviral activity against SARS-CoV-2, which is the virus responsible for the COVID-19 pandemic. Over the last years, much effort has been dedicated to discovering new dual anticancer-antiviral agents. Ru-based complexes could be very suitable in this respect. Thus, this review focuses on the most recent studies regarding newly synthesized Ru(II) complexes for use as anticancer and/or antiviral agents.
Collapse
Affiliation(s)
- Assunta D’Amato
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| | | | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| |
Collapse
|
5
|
Lerchbammer-Kreith Y, Hejl M, Sommerfeld NS, Weng-Jiang X, Odunze U, Mellor RD, Workman DG, Jakupec MA, Schätzlein AG, Uchegbu IF, Galanski MS, Keppler BK. Quaternary Ammonium Palmitoyl Glycol Chitosan (GCPQ) Loaded with Platinum-Based Anticancer Agents-A Novel Polymer Formulation for Anticancer Therapy. Pharmaceuticals (Basel) 2023; 16:1027. [PMID: 37513938 PMCID: PMC10386324 DOI: 10.3390/ph16071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Quaternary ammonium palmitoyl glycol chitosan (GCPQ) has already shown beneficial drug delivery properties and has been studied as a carrier for anticancer agents. Consequently, we synthesised cytotoxic platinum(IV) conjugates of cisplatin, carboplatin and oxaliplatin by coupling via amide bonds to five GCPQ polymers differing in their degree of palmitoylation and quaternisation. The conjugates were characterised by 1H and 195Pt NMR spectroscopy as well as inductively coupled plasma mass spectrometry (ICP-MS), the latter to determine the amount of platinum(IV) units per GCPQ polymer. Cytotoxicity was evaluated by the MTT assay in three human cancer cell lines (A549, non-small-cell lung carcinoma; CH1/PA-1, ovarian teratocarcinoma; SW480, colon adenocarcinoma). All conjugates displayed a high increase in their cytotoxic activity by factors of up to 286 times compared to their corresponding platinum(IV) complexes and mostly outperformed the respective platinum(II) counterparts by factors of up to 20 times, also taking into account the respective loading of platinum(IV) units per GCPQ polymer. Finally, a biodistribution experiment was performed with an oxaliplatin-based GCPQ conjugate in non-tumour-bearing BALB/c mice revealing an increased accumulation in lung tissue. These findings open promising opportunities for further tumouricidal activity studies especially focusing on lung tissue.
Collapse
Affiliation(s)
- Yvonne Lerchbammer-Kreith
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Nadine S Sommerfeld
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Xian Weng-Jiang
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Uchechukwu Odunze
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Ryan D Mellor
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - David G Workman
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Andreas G Schätzlein
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Ijeoma F Uchegbu
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Mathea S Galanski
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
6
|
Cseh K, Berasaluce I, Fuchs V, Banc A, Schweikert A, Prado-Roller A, Hejl M, Wernitznig D, Koellensperger G, Jakupec MA, Kandioller W, Malarek MS, Keppler BK. Anticancer Tungstenocenes with a Diverse Set of ( O,O-), ( O, S-) and ( O, N-) Chelates-A Detailed Biological Study Using an Improved Evaluation via 3D Spheroid Models. Pharmaceutics 2023; 15:1875. [PMID: 37514061 PMCID: PMC10384408 DOI: 10.3390/pharmaceutics15071875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
The synthesis, characterization and biological activity of tungstenocenes with varying biologically active (O,O-), (S,O-) and (N,O-) chelates are described. Complexes were characterized by 1H and 13C NMR, elemental analysis, ESI-mass spectrometry, FT-IR spectroscopy and X-ray diffraction analysis. The aqueous stability was studied by UV/Vis spectroscopy and the WIV to WV process by cyclic voltammetry. The cytotoxicity was determined by the MTT assay in A549, CH1/PA-1 and SW480 cancer cells as well as in IMR-90 human fibroblasts. Extensive biological evaluation was performed in three other human cancer cell lines (HCT116, HT29 and MCF-7) in monolayer and multicellular tumor spheroid cultures to better understand the mode of action. Lead compounds showed promising in vitro anticancer activity in all cancer cell lines. Further studies yielded important insights into apoptosis induction, ROS generation, different patterns in metal distribution (detected by LA-ICP-TOF-MS), changes in KI67 (proliferation marker) expression and DNA interactions. The results based on qualitative and quantitative research designs show that complexes containing (S,O-) chelates are more active than their (O,O-) and (N,O-) counterparts. The most striking results in spheroid models are the high antiproliferative capacity and the different distribution pattern of two complexes differing only in a W-S or W-O bond.
Collapse
Affiliation(s)
- Klaudia Cseh
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Iker Berasaluce
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Valentin Fuchs
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Alexandra Banc
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Andreas Schweikert
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, A 1090 Vienna, Austria
| | - Alexander Prado-Roller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Debora Wernitznig
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, A 1090 Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Michael S Malarek
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, A 1090 Vienna, Austria
| |
Collapse
|
7
|
Lerchbammer-Kreith Y, Hejl M, Vician P, Jakupec MA, Berger W, Galanski MS, Keppler BK. Combination of Drug Delivery Properties of PAMAM Dendrimers and Cytotoxicity of Platinum(IV) Complexes-A More Selective Anticancer Treatment? Pharmaceutics 2023; 15:1515. [PMID: 37242758 PMCID: PMC10221222 DOI: 10.3390/pharmaceutics15051515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Based on their drug delivery properties and activity against tumors, we combined PAMAM dendrimers with various platinum(IV) complexes in order to provide an improved approach of anticancer treatment. Platinum(IV) complexes were linked to terminal NH2 moieties of PAMAM dendrimers of generation 2 (G2) and 4 (G4) via amide bonds. Conjugates were characterized by 1H and 195Pt NMR spectroscopy, ICP-MS and in representative cases by pseudo-2D diffusion-ordered NMR spectroscopy. Additionally, the reduction behavior of conjugates in comparison to corresponding platinum(IV) complexes was investigated, showing a faster reduction of conjugates. Cytotoxicity was evaluated via the MTT assay in human cell lines (A549, CH1/PA-1, SW480), revealing IC50 values in the low micromolar to high picomolar range. The synergistic combination of PAMAM dendrimers and platinum(IV) complexes resulted in up to 200 times increased cytotoxic activity of conjugates in consideration of the loaded platinum(IV) units compared to their platinum(IV) counterparts. The lowest IC50 value of 780 ± 260 pM in the CH1/PA-1 cancer cell line was detected for an oxaliplatin-based G4 PAMAM dendrimer conjugate. Finally, in vivo experiments of a cisplatin-based G4 PAMAM dendrimer conjugate were performed based on the best toxicological profile. A maximum tumor growth inhibition effect of 65.6% compared to 47.6% for cisplatin was observed as well as a trend of prolonged animal survival.
Collapse
Affiliation(s)
- Yvonne Lerchbammer-Kreith
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Petra Vician
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Mathea S Galanski
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
8
|
Lerchbammer-Kreith Y, Sommerfeld NS, Cseh K, Weng-Jiang X, Odunze U, Schätzlein AG, Uchegbu IF, Galanski MS, Jakupec MA, Keppler BK. Platinum(IV)-Loaded Degraded Glycol Chitosan as Efficient Platinum(IV) Drug Delivery Platform. Pharmaceutics 2023; 15:pharmaceutics15041050. [PMID: 37111536 PMCID: PMC10145531 DOI: 10.3390/pharmaceutics15041050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
A new class of anticancer prodrugs was designed by combining the cytotoxicity of platinum(IV) complexes and the drug carrier properties of glycol chitosan polymers: Unsymmetrically carboxylated platinum(IV) analogues of cisplatin, carboplatin and oxaliplatin, namely (OC-6-44)-acetatodiammine(3-carboxypropanoato)dichloridoplatinum(IV), (OC-6-44)-acetaodiammine(3-carboxypropanoato)(cyclobutane-1,1-dicarboxylato)platinum(IV) and (OC-6-44)-acetato(3-carboxypropanoato)(1R,2R-cyclohexane-1,2-diamine)oxalatoplatinum(IV) were synthesised and conjugated via amide bonding to degraded glycol chitosan (dGC) polymers with different chain lengths (5, 10, 18 kDa). The 15 conjugates were investigated with 1H and 195Pt NMR spectroscopy, and average amounts of platinum(IV) units per dGC polymer molecule with ICP-MS, revealing a range of 1.3-22.8 platinum(IV) units per dGC molecule. Cytotoxicity was tested with MTT assays in the cancer cell lines A549, CH1/PA-1, SW480 (human) and 4T1 (murine). IC50 values in the low micromolar to nanomolar range were obtained, and higher antiproliferative activity (up to 72 times) was detected with dGC-platinum(IV) conjugates in comparison to platinum(IV) counterparts. The highest cytotoxicity (IC50 of 0.036 ± 0.005 µM) was determined in CH1/PA-1 ovarian teratocarcinoma cells with a cisplatin(IV)-dGC conjugate, which is hence 33 times more potent than the corresponding platinum(IV) complex and twice more potent than cisplatin. Biodistribution studies of an oxaliplatin(IV)-dGC conjugate in non-tumour-bearing Balb/C mice showed an increased accumulation in the lung compared to the unloaded oxaliplatin(IV) analogue, arguing for further activity studies.
Collapse
Affiliation(s)
- Yvonne Lerchbammer-Kreith
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Nadine S Sommerfeld
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Klaudia Cseh
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Xian Weng-Jiang
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Uchechukwu Odunze
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Andreas G Schätzlein
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Ijeoma F Uchegbu
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Mathea S Galanski
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
9
|
Fuchs V, Cseh K, Hejl M, Vician P, Neuditschko B, Meier‐Menches SM, Janker L, Bileck A, Gajic N, Kronberger J, Schaier M, Neumayer S, Köllensperger G, Gerner C, Berger W, Jakupec MA, Malarek MS, Keppler BK. Highly Cytotoxic Molybdenocenes with Strong Metabolic Effects Inhibit Tumour Growth in Mice. Chemistry 2023; 29:e202202648. [PMID: 36222279 PMCID: PMC10099754 DOI: 10.1002/chem.202202648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 11/05/2022]
Abstract
A series of six highly lipophilic Cp-substituted molybdenocenes bearing different bioactive chelating ligands was synthesized and characterized by NMR spectroscopy, mass spectrometry and X-ray crystallography. In vitro experiments showed a greatly increased cytotoxic potency when compared to the non-Cp-substituted counterparts. In vivo experiments performed with the dichlorido precursor, (Ph2 C-Cp)2 MoCl2 and the in vitro most active complex, containing the thioflavone ligand, showed an inhibition of tumour growth. Proteomic studies on the same two compounds demonstrated a significant regulation of tubulin-associated and mitochondrial inner membrane proteins for both compounds and a strong metabolic effect of the thioflavone containing complex.
Collapse
Affiliation(s)
- Valentin Fuchs
- Institute of Inorganic ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”Währinger Straße 421090ViennaAustria
| | - Klaudia Cseh
- Institute of Inorganic ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Michaela Hejl
- Institute of Inorganic ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Petra Vician
- Center for Cancer ResearchMedical University of ViennaBorschkegasse 8 A1090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”Währinger Straße 421090ViennaAustria
| | - Benjamin Neuditschko
- Institute of Inorganic ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
- Institute of Analytical ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Samuel M. Meier‐Menches
- Institute of Inorganic ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
- Institute of Analytical ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWähringer Straße 381090ViennaAustria
| | - Lukas Janker
- Institute of Analytical ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWähringer Straße 381090ViennaAustria
| | - Andrea Bileck
- Institute of Analytical ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWähringer Straße 381090ViennaAustria
| | - Natalie Gajic
- Institute of Inorganic ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Julia Kronberger
- Institute of Inorganic ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Martin Schaier
- Institute of Analytical ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Sophie Neumayer
- Institute of Analytical ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Gunda Köllensperger
- Institute of Analytical ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Christopher Gerner
- Institute of Analytical ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWähringer Straße 381090ViennaAustria
| | - Walter Berger
- Center for Cancer ResearchMedical University of ViennaBorschkegasse 8 A1090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”Währinger Straße 421090ViennaAustria
| | - Michael A. Jakupec
- Institute of Inorganic ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”Währinger Straße 421090ViennaAustria
| | - Michael S. Malarek
- Institute of Inorganic ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”Währinger Straße 421090ViennaAustria
| | - Bernhard K. Keppler
- Institute of Inorganic ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”Währinger Straße 421090ViennaAustria
| |
Collapse
|