1
|
Sah NK, Arora S, Sahu RC, Kumar D, Agrawal AK. Plant-based exosome-like extracellular vesicles as encapsulation vehicles for enhanced bioavailability and breast cancer therapy: recent advances and challenges. Med Oncol 2025; 42:184. [PMID: 40293531 DOI: 10.1007/s12032-025-02720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
Breast cancer remains a common and challenging disease globally among women, prompting the need for innovative and effective therapeutic approaches. Plant-based exosomes (PBEXOs) offer a promising avenue for breast cancer treatment. Derived from plant sources, these EXOs exhibit unique properties, including biocompatibility, non-immunogenicity, and inherent bioactive compounds that make them suitable for medical applications. PBEXOs have shown potential in targeting cancer cells due to their ability to transport therapeutic substances directly to tumor sites, enhancing medication effectiveness and reducing systemic adverse effects. Their natural composition allows for modifications that improve stability, targeting capabilities, and drug-loading efficiency. The advanced isolation ensures the retention of their functional properties, which is crucial for their therapeutic applications. Characterization of these EXOs further supports their potential use in oncology. In preclinical studies, PBEXOs have been successfully loaded with various chemotherapeutic drugs, demonstrating significant anti-cancer activity. Recent studies highlight the progression of PBEXOs from experimental models to potential clinical applications, with some formulations receiving regulatory attention. However, challenges such as scalability, regulatory compliance, and a comprehensive understanding of their mechanisms remain. Addressing these issues could pave the way for PBEXOs to become a standard component in the arsenal against breast cancer, offering hope for more effective and targeted therapies.
Collapse
Affiliation(s)
- Niraj Kumar Sah
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Sanchit Arora
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Rohan Chand Sahu
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Li M, Liang T, Shu Y, Cheng M, Wang H, Khan S, Qi W, Zhang Z, Zhao K. Fabrication and characterization of Artemisia sphaerocephala Krasch. Gum-based active films containing coriander essential oil emulsion for meat preservation. Int J Biol Macromol 2025; 309:142809. [PMID: 40187451 DOI: 10.1016/j.ijbiomac.2025.142809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Bio-based packaging holds substantial prospects due to the inherent non-toxic property and biodegradability. The potential for practical applications would be improved if the requirements of antimicrobial, antioxidant and mechanical properties could be met simultaneously. This work utilized Artemisia sphaerocephala Krasch. Gum (ASKG) (film-forming matrix) for forming the active film by adding coriander essential oil emulsion (COE) at different concentrations. The active films were systematically tested for their physicochemical properties and evaluated for their freshness preservation effect on refrigerated lamb and chicken. The results indicated that emulsion incorporation reduced the water sensitivity of the films while enhancing their barrier, mechanical, antioxidant, and antibacterial properties. Specifically, compared to the control ASKG film, the water solubility of the active film decreased from 42.55 % to 38.39 %, while the tensile strength (TS) and elongation at break (EAB) increased to 9.34 MPa and 62.38 %, respectively. Additionally, the active film demonstrated a high capacity for radical scavenging, with maximum 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azido-bis(3-ethylbenzothiazoline-6-sulphonate) diammonium salt (ABTS) radical scavenging rates of 49.87 % and 72.00 %, respectively. Combined with its antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) the active film can extend the shelf life of lamb and chicken. In summary, the prepared ASKG active film exhibits excellent comprehensive properties and holds significant potential as a packaging material for fresh meat preservation.
Collapse
Affiliation(s)
- Mengli Li
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Tieqiang Liang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, PR China
| | - Ying Shu
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Ming Cheng
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Han Wang
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Sohail Khan
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Wenhui Qi
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China
| | - Zhisheng Zhang
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China.
| | - Kaixuan Zhao
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, PR China.
| |
Collapse
|
3
|
Che K, Wang C, Chen H. Advancing functional foods: a systematic analysis of plant-derived exosome-like nanoparticles and their health-promoting properties. Front Nutr 2025; 12:1544746. [PMID: 40115388 PMCID: PMC11924939 DOI: 10.3389/fnut.2025.1544746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Plant-derived exosome-like nanoparticles (PDENs), emerging as novel bioactive agents, exhibit significant potential in food science and nutritional health. These nanoparticles, enriched with plant-specific biomolecules such as proteins, lipids, nucleic acids, and secondary metabolites, demonstrate unique cross-species regulatory capabilities, enabling interactions with mammalian cells and gut microbiota. PDENs enhance nutrient bioavailability by protecting sensitive compounds during digestion, modulate metabolic pathways through miRNA-mediated gene regulation, and exhibit anti-inflammatory and antioxidant properties. For instance, grape-derived PDENs reduce plasma triglycerides in high-fat diets, while ginger-derived nanoparticles alleviate colitis by downregulating pro-inflammatory cytokines. Additionally, PDENs serve as natural drug carriers, with applications in delivering therapeutic agents like doxorubicin and paclitaxel. Despite these advancements, challenges remain in standardizing extraction methods (ultracentrifugation, immunoaffinity), ensuring stability during food processing and storage, and evaluating long-term safety. Current research highlights the need for optimizing lyophilization techniques and understanding interactions between PDENs and food matrices. Furthermore, while PDENs show promise in functional food development-such as fortified beverages and probiotic formulations-their clinical translation requires rigorous pharmacokinetic studies and regulatory clarity. This review synthesizes existing knowledge on PDENs' composition, biological activities, and applications, while identifying gaps in scalability, stability, and safety assessments. Future directions emphasize interdisciplinary collaboration to harness PDENs' potential in combating metabolic disorders, enhancing food functionality, and advancing personalized nutrition strategies.
Collapse
Affiliation(s)
- Ke Che
- College of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Cong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Hao Chen
- College of Food Engineering, Anhui Science and Technology University, Fengyang, China
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
- Planting Department, Jiuhua Huayuan Pharmaceutical Co., Ltd., Chuzhou, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Cherfi I, Nasma M, Hasan GG, Benaissa A, Benaissa Y, Laouini SE, Bouafia A, Alharthi F, Emran TB, Mallick J. Therapeutic Potential of Artemisia campestris Essential Oil: Antioxidant, Anti-Inflammatory, and Anticancer Insights From In Silico Analysis. Biomed Chromatogr 2025; 39:e70012. [PMID: 39918166 DOI: 10.1002/bmc.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 03/04/2025]
Abstract
Artemisia campestris subsp. campestris (tuguft) is a medicinal plant traditionally used in Algerian medicine. This study investigates the chemical composition and bioactivity of its essential oil (ACEO). Gas chromatography-mass spectrometry (GC-MS) analysis identified key compounds, including linalyl acetate (2.92%), geranyl acetate (2.45%), and eucalyptol (1.38%). ACEO demonstrated significant antioxidant activity, with IC50 values of 11.09 μg/mL (DPPH), 15.81 μg/mL (FRAP), and 22.70 μg/mL (β-carotene). It also enhanced peroxidase activity by 82.67 U/g. The anti-inflammatory effects were confirmed with an IC50 of 18.87 μg/mL. Notably, in silico molecular docking revealed that 3-cyclopentyl-N-(2-(3,4-dimethoxyphenyl)ethyl) exhibits strong binding affinity to phosphoinositide 3-kinase gamma, a target for pancreatic cancer therapy, suggesting potential anticancer activity. These findings underscore the therapeutic potential of ACEO, highlighting its antioxidant, anti-inflammatory, and anticancer properties.
Collapse
Affiliation(s)
- Inasse Cherfi
- Faculty of Natural Science and Life, Department of Molecular and Cellular Biology, El Oued University, El Oued, Algeria
- Laboratory Biology, Environment, and Health, Faculty of Natural Sciences and Life, El-Oued University, El-Oued, Algeria
| | - Mahboub Nasma
- Faculty of Natural Science and Life, Department of Molecular and Cellular Biology, El Oued University, El Oued, Algeria
- Laboratory Biology, Environment, and Health, Faculty of Natural Sciences and Life, El-Oued University, El-Oued, Algeria
| | - Gamil Gamal Hasan
- VPRS Laboratory, Chemistry Department, Faculty of Mathematics and Matter Sciences, University of KASDI Merbah, Ouargla, Algeria
- Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology of Technology, University of El Oued, El Oued, Algeria
| | - Abir Benaissa
- Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology of Technology, University of El Oued, El Oued, Algeria
| | - Youcef Benaissa
- VPRS Laboratory, Chemistry Department, Faculty of Mathematics and Matter Sciences, University of KASDI Merbah, Ouargla, Algeria
| | - Salah Eddine Laouini
- Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology of Technology, University of El Oued, El Oued, Algeria
- Department of Process Engineering, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - Abderrhmane Bouafia
- Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology of Technology, University of El Oued, El Oued, Algeria
- Department of Process Engineering, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - Fahad Alharthi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Jewel Mallick
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| |
Collapse
|
5
|
Guo F, Wu Y, Wang G, Liu J. Role of PCBP2 in regulating nanovesicles loaded with curcumin to mitigate neuroferroptosis in neural damage caused by heat stroke. J Nanobiotechnology 2024; 22:800. [PMID: 39731111 DOI: 10.1186/s12951-024-02889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/01/2024] [Indexed: 12/29/2024] Open
Abstract
OBJECTIVE This study aims to elucidate the mechanisms by which nanovesicles (NVs) transport curcumin(CUR) across the blood-brain barrier to treat hypothalamic neural damage induced by heat stroke by regulating the expression of poly(c)-binding protein 2 (PCBP2). METHODS Initially, NVs were prepared from macrophages using a continuous extrusion method. Subsequently, CUR was loaded into NVs using sonication, yielding engineered cell membrane Nanovesicles loaded with curcumin (NVs-CUR), which were characterized and subjected to in vitro and in vivo tracking analysis. Evaluations included assessing the toxicity of NVs-CUR using the MTT assay, evaluating neuroprotection of NVs-CUR against H2O2-induced oxidative stress damage in PC12 cells, examining effects on cell morphology and quantity, and detecting ferroptosis-related markers through Western blot and transmission electron microscopy (TEM). Proteomic analysis was conducted on PC12 cells treated with NVs (n = 3) and NVs-CUR (n = 3) to identify downstream key factors. Subsequently, the expression of key factors was modulated, and rescue experiments were performed to validate the impact of NVs-CUR through the regulation of key factor expression. Furthermore, a mouse model of hypothalamic neural damage induced by heat stroke was established, where CUR, NVs-CUR, and ferroptosis inducer Erastin were administered to observe mouse survival rates, conduct nerve function deficit scoring, perform histological staining, and measure levels of inflammation and oxidative stress factors in hypothalamic tissue. RESULTS NVs-CUR was successfully prepared with excellent stability, serving as an advantageous drug delivery system that effectively targets brain injury sites or neurons both in vitro and in vivo. Subsequent in vitro cell experiments demonstrated the biocompatibility of NVs-CUR, showing superior protective effects against H2O2-induced PC12 cell damage and reduced ferroptosis compared to CUR. Moreover, in the mouse model of hypothalamic neural damage induced by heat stroke, NVs-CUR exhibited enhanced therapeutic effects. Proteomic analysis revealed that NVs-CUR exerted its effects through the regulation of key protein PCBP2; silencing PCBP2 reversed the protective effect of NVs-CUR on neural damage and its inhibition of ferroptosis. Additionally, NVs-CUR regulated solute carrier family 7 member 11 (SLC7A11) expression by PCBP2; overexpression of SLC7A11 reversed the promotion of neural damage and ferroptosis by silencing PCBP2. Animal experiments indicated that ferroptosis inducers reversed the improved survival and nerve function observed with NVs-CUR, silencing PCBP2 reversed the ameliorative effects of NVs-CUR on hypothalamic neural injury induced by heat stroke, and overexpression of SLC7A11 further reversed the adverse effects of silencing PCBP2 on hypothalamic neural injury induced by heat stroke. This suggests that NVs-CUR alleviates hypothalamic neural damage induced by heat stroke by targeting the PCBP2/SLC7A11 axis to reduce neuronal ferroptosis. CONCLUSION This study successfully developed engineered cell membrane NVs-CUR with neuron-targeting properties. NVs-CUR increased the expression of PCBP2, maintained the stability of SLC7A11 mRNA, reduced ferroptosis, and ultimately alleviated hypothalamic neuroinflammation induced by heatstroke.
Collapse
Affiliation(s)
- Fei Guo
- Department of Emergency Trauma Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yizhan Wu
- Graduate School of Xinjiang Medical University, Urumqi, China
| | - Guangjun Wang
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China
| | - Jiangwei Liu
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.
| |
Collapse
|
6
|
Wei W, Wang P, Qing P, Li Z, He Q. Non-surgical nursing care for tumor patients: an overview of sedation, analgesia, and recent innovations. Front Oncol 2024; 14:1322196. [PMID: 39355133 PMCID: PMC11443224 DOI: 10.3389/fonc.2024.1322196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/12/2024] [Indexed: 10/03/2024] Open
Abstract
With the increasing prevalence of tumors, effective symptom management has emerged as a cornerstone of patient care. While surgical interventions remain pivotal, non-surgical nursing methods have gained prominence in providing relief from pain, discomfort, and other tumor-related symptoms. This review delves into the various non-surgical approaches employed, emphasizing tumor sedation and analgesia. We discuss the array of non-pharmacological and pharmacological strategies, shedding light on their indications, contraindications, and potential side effects. Furthermore, the importance of addressing individual differences in pain perception and the ethical considerations in symptom management are highlighted. We conclude by providing insights into the recent innovations in the field, emphasizing the need for personalized and comprehensive care to enhance patients' quality of life. Tumor sedation, Tumor analgesia, Non-surgical nursing care, Pain management, Non-pharmacological interventions, Palliative care, Recent innovations, Symptom management.
Collapse
Affiliation(s)
- Wei Wei
- Department of Anesthesiology, Affiliated Sport Hospital of CDSU, Chengdu, Sichuan, China
| | - Pan Wang
- Department of Pain, Zibo Central Hospital, Zibo, Shandong, China
| | - Pan Qing
- Department of Geriatric Orthopaedics II, Sichuan Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Zhang Li
- Department of Anesthesiology, Affiliated Sport Hospital of CDSU, Chengdu, Sichuan, China
| | - Qi He
- Department of Anesthesiology, Affiliated Sport Hospital of CDSU, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Meng Y, Sun J, Yu T, Piao H. Plant-derived nanovesicles offer a promising avenue for anti-aging interventions. PHYSIOLOGIA PLANTARUM 2024; 176:e14283. [PMID: 38627963 DOI: 10.1111/ppl.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Over the past few years, the study of plant-derived nanovesicles (PDNVs) has emerged as a hot topic of discussion and research in the scientific community. This remarkable interest stems from their potential role in facilitating intercellular communication and their unique ability to deliver biologically active components, including proteins, lipids, and miRNAs, to recipient cells. This fascinating ability to act as a molecular courier has opened up an entirely new dimension in our understanding of plant biology. The field of research focusing on the potential applications of PDNVs is still in its nascent stages. However, it has already started gaining traction due to the growing interest in its possible use in various branches of biotechnology and medicine. Their unique properties and versatile applications offer promising future research and development prospects in these fields. Despite the significant progress in our understanding, many unanswered questions and mysteries surround the mechanisms by which PDNVs function and their potential applications. There is a dire need for further extensive research to elucidate these mechanisms and explore the full potential of these fascinating vesicles. As the technology at our disposal advances and our understanding of PDNVs deepens, it is beyond doubt that PDNVs will continue to be a subject of intense research in anti-aging therapeutics. This comprehensive review is designed to delve into the fascinating and multifaceted world of PDNV-based research, particularly focusing on how these nanovesicles can be applied to anti-aging therapeutics.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| |
Collapse
|
8
|
Najar M, Bouhtit F, Rahmani S, Bouali A, Melki R, Najimi M, Lewalle P, Merimi M. The immunogenic profile and immunomodulatory function of mesenchymal stromal / stem cells in the presence of Ptychotis verticillata. Heliyon 2024; 10:e24822. [PMID: 38317994 PMCID: PMC10838760 DOI: 10.1016/j.heliyon.2024.e24822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are considered to be a promising immunotherapeutic tool due to their easy accessibility, culture expansion possibilities, safety profile, and immunomodulatory properties. Although several studies have demonstrated the therapeutic effects of MSCs, their efficacy needs to be improved while also preserving their safety. It has been suggested that cell homeostasis may be particularly sensitive to plant extracts. The impact of natural compounds on immunity is thus a fascinating and growing field. Ptychotis verticillata and its bioactive molecules, carvacrol and thymol, are potential candidates for improving MSC therapeutic effects. They can be used as immunotherapeutic agents to regulate MSC functions and behavior during immunomodulation. Depending on their concentrations and incubation time, these compounds strengthened the immunomodulatory functions of MSCs while maintaining their immune-evasive profile. Incubating MSCs with carvacrol and thymol does not alter their hypoimmunogenicity, as no induction of the allogeneic immune response was observed. MSCs also showed enhanced abilities to reduce the proliferation of activated T cells. Thus, MSCs are immunologically responsive to bioactive molecules derived from PV. The bioactivity may depend on the whole phyto-complex of the oil. These findings may contribute to the development of safe and efficient immunotherapeutic MSCs by using medicinal plant-derived active molecules.
Collapse
Affiliation(s)
- Mehdi Najar
- Faculty of Medicine, ULB721, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), University of Montreal, Montreal H2X 0A9, QC, Canada
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Saida Rahmani
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Abderrahim Bouali
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Rahma Melki
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Makram Merimi
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
9
|
Zuzarte M, Sousa C, Alves-Silva J, Salgueiro L. Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data. Biomedicines 2024; 12:365. [PMID: 38397967 PMCID: PMC10886757 DOI: 10.3390/biomedicines12020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ageing is a natural process characterized by a time-dependent decline of physiological integrity that compromises functionality and inevitably leads to death. This decline is also quite relevant in major human pathologies, being a primary risk factor in neurodegenerative diseases, metabolic disorders, cardiovascular diseases and musculoskeletal disorders. Bearing this in mind, it is not surprising that research aiming at improving human health during this process has burst in the last decades. Importantly, major hallmarks of the ageing process and phenotype have been identified, this knowledge being quite relevant for future studies towards the identification of putative pharmaceutical targets, enabling the development of preventive/therapeutic strategies to improve health and longevity. In this context, aromatic plants have emerged as a source of potential bioactive volatile molecules, mainly monoterpenes, with many studies referring to their anti-ageing potential. Nevertheless, an integrated review on the current knowledge is lacking, with several research approaches studying isolated ageing hallmarks or referring to an overall anti-ageing effect, without depicting possible mechanisms of action. Herein, we aim to provide an updated systematization of the bioactive potential of volatile monoterpenes on recently proposed ageing hallmarks, and highlight the main mechanisms of action already identified, as well as possible chemical entity-activity relations. By gathering and categorizing the available scattered information, we also aim to identify important research gaps that could help pave the way for future research in the field.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Cátia Sousa
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal;
- Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal
| | - Jorge Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
10
|
Xu J, Jiang Z, Peng J, Sun R, Zhang L, Chen Y, Pan D, Huang J, Gong Z, Chen Y, Shen X. Fabrication of a protein-dextran conjugates formed oral nanoemulsion and its application to deliver the essential oil from Alpinia zerumbet Fructus. Int J Biol Macromol 2023; 249:125918. [PMID: 37495002 DOI: 10.1016/j.ijbiomac.2023.125918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
The injury of vascular endothelial cells caused by high glucose (HG) is one of the driving factors of vascular complications of diabetes. Oral administration is the most common route of administration for the treatment of diabetes and its vascular complications. Essential oil extracts from Chinese medicine possess potential therapeutic effects on vascular endothelial injury. However, low solubility and volatility of essential oils generally result in poor oral absorption. Development of nanocarriers for essential oils is a promising strategy to overcome the physiological barriers of oral absorption. In this study, a nanoemulsion composed of bovine serum albumin (BSA)-dextran sulfate (DS) conjugate and sodium deoxycholate (SD) was constructed. The nanoemulsions were verified with promoted oral absorption and prolonged circulation time. After the primary evaluation of the nanoemulsion, essential oil from Alpinia zerumbet Fructus (EOFAZ)-loaded nanoemulsion (denoted as EOFAZ@BD5/S) was prepared and characterized. Compared to the free EOFAZ, EOFAZ@BD5/S increased the protective effects on HG-induced HUVEC injury in vitro and ameliorative effects on the vascular endothelium disorder and tunica media fibroelastosis in a T2DM mouse model. Collectively, this study provides a nanoemulsion for the oral delivery of essential oils, which holds strong promise in the treatment of diabetes-induced vascular endothelial injury.
Collapse
Affiliation(s)
- Jinzhuan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Zhaohui Jiang
- The First People's Hospital of Guiyang, Guiyang 550002, China
| | - Jianqing Peng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Runbin Sun
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lili Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Di Pan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Jing Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Zipeng Gong
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Yi Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
11
|
Zhu Y, Chen T, Feng T, Zhang J, Meng Z, Zhang N, Luo G, Wang Z, Pang Y, Zhou Y. Fabrication and Biological Activities of All-in-One Composite Nanoemulsion Based on Blumea balsamifera Oil-Tea Tree Oil. Molecules 2023; 28:5889. [PMID: 37570859 PMCID: PMC10420664 DOI: 10.3390/molecules28155889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Nanoemulsion is a new multi-component drug delivery system; the selection of different oil phases can give it special physiological activity, and play the role of "medicine and pharmaceutical excipients all-in-one". In this paper, we used glycyrrhizic acid as the natural surfactant, and Blumea balsamifera oil (BB) and tea tree oil (TTO) as the mixed oil phase, to obtain a new green functional composite nanoemulsion. Using the average particle size and polydispersion index (PDI) as the evaluation criteria, the effects of the oil ratio, oil content, glycyrrhizic acid concentration, and ultrasonic time on the nanoemulsion were systematically investigated. The stability and physicochemical properties and biological activities of BB-TTO NEs prepared via the optimum formulation were characterized. The optimal prescription was BB: TTO = 1:1, 5% oil phase, 0.7% glycyrrhizic acid, and 5 min ultrasonication time. The mean particle size, PDI, and zeta potential were 160.01 nm, 0.125, and -50.94 mV, respectively. The nanoemulsion showed non-significant changes in stability after centrifugation, dilution, and 120 days storage. These nanoemulsions were found to exhibit potential antibacterial and anti-inflammatory activities. The minimal inhibitory concentration (MIC) of BB-TTO NEs against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa is 2975 μg/mL, 2975 μg/mL, and 5950 μg/mL, respectively. A lower level of inflammatory cell infiltration and proportion of fibrosis were found in the synovial tissue of AIA rats treated with BB-TTO NEs. These findings demonstrate that the BB-TTO NEs produced in this study have significant potential for usage in antibacterial and anti-inflammatory areas.
Collapse
Affiliation(s)
- Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Teng Chen
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Tingting Feng
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Zejing Meng
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
| | - Ning Zhang
- School of Acupuncture-Moxibustion and Tuina, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Gang Luo
- Key Laboratory of Medical Microbiology and Parasitology, Key Laboratory of Environmental Pollution Monitoringand Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yuxin Pang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
| |
Collapse
|
12
|
Zuzarte M, Girão H, Salgueiro L. Aromatic Plant-Based Functional Foods: A Natural Approach to Manage Cardiovascular Diseases. Molecules 2023; 28:5130. [PMID: 37446792 DOI: 10.3390/molecules28135130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/06/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Aromatic plants and their essential oils have shown beneficial effects on the cardiovascular system and, therefore, are potential raw materials in the development of functional foods. However, despite their undeniable potential, essential oils present several limitations that need to be addressed, such as stability, poor solubility, undesirable sensory effects, and low bioavailability. The present review provides a current state-of-the-art on the effects of volatile extracts obtained from aromatic plants on the cardiovascular system and focuses on major challenges that need to be addressed to increase their use in food products. Moreover, strategies underway to overcome these limitations are pointed out, thus anticipating a great appreciation of these extracts in the functional food industry.
Collapse
Affiliation(s)
- Mónica Zuzarte
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- University Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-354 Coimbra, Portugal
| | - Henrique Girão
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal
- University Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-354 Coimbra, Portugal
| | - Lígia Salgueiro
- University Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- University Coimbra, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, 3000-548 Coimbra, Portugal
| |
Collapse
|
13
|
Froldi G. The Use of Medicinal Plants in Blood Vessel Diseases: The Influence of Gender. Life (Basel) 2023; 13:life13040866. [PMID: 37109395 PMCID: PMC10147070 DOI: 10.3390/life13040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Data available in the literature on the use of herbal products to treat inflammation-related vascular diseases were considered in this study, while also assessing the influence of gender. To this end, the articles published in PubMed over the past 10 years that described the use of plant extracts in randomized clinical trials studying the effectiveness in vascular pathologies were analyzed. The difference in efficacy of plant-derived preparations in female and male subjects was always considered when reporting. The safety profiles of the selected plants were described, reporting unwanted effects in humans and also by searching the WHO database (VigiBase®). The medicinal plants considered were Allium sativum, Campomanesia xanthocarpa, Sechium edule, Terminalia chebula. Additionally, an innovative type of preparation consisting of plant-derived nanovesicles was also reported.
Collapse
Affiliation(s)
- Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|