1
|
Zhou J, Wan S, Wu Y, Hu H, Liu Y, Liao Z, Xu M, Wu J, Fan Q. Cancer cell membrane-camouflaged paclitaxel/PLGA nanoparticles for targeted therapy against lung cancer. Biomed Pharmacother 2024; 177:117102. [PMID: 38991303 DOI: 10.1016/j.biopha.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Paclitaxel (PTX) is a first-line drug for the treatment of lung cancer, but its targeting and therapeutic effect are unsatisfactory. Herein, lung cancer cell (A549) membrane biomimetic PTX-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (AM@PTX-NPs) were constructed to eliminate the shortcomings of PTX. The AM@PTX-NPs were successfully prepared with a high drug loading efficiency (10.90±0.06 %). Moreover, transmission electron microscopy, SDS-PAGE, and western blotting proved that AM@PTX-NPs were spherical nanoparticles camouflaged by the A549 cell membrane. Both in vitro and in vivo assays revealed that the AM@PTX-NPs displayed outstanding targeting capacity due to A549 membrane modification. The cytotoxicity experiment showed that the developed biomimetic formulation was able to effectively reduce the proliferation of A549 cells. Moreover, AM@PTX-NPs exhibited a significant tumor growth inhibition rate (73.00 %) with good safety in the tumor-bearing mice, which was higher than that of the PTX-NPs without A549 membrane coating (37.39 %). Overall, the constructed bioinspired vector could provide a novel platform for the PTX delivery and demonstrated a promising strategy for the targeted cancer treatment.
Collapse
Affiliation(s)
- Jiahan Zhou
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengli Wan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuesong Wu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haiyang Hu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yang Liu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zuyue Liao
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mengyao Xu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianming Wu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
2
|
Wu Y, Fan Q, Zhou J, Hu H, Liao Z, Tang X, Xu M, Yang S, Lai J, Wan S, Wu J. Biomimetic platelet-like nanoparticles enhance targeted hepatocellular carcinoma therapy. Colloids Surf B Biointerfaces 2024; 240:113973. [PMID: 38795584 DOI: 10.1016/j.colsurfb.2024.113973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Curcumin (CUR) is a promising natural product for hepatocellular carcinoma (HCC) therapy. However, its clinical application has been limited by some issues such as rapid clearance and inadequate tumor accumulation. To address these drawbacks, we developed platelet membrane-coated CUR-loaded PLGA nanoparticles (PCPNPs). In this work, due to the bioinspired strategy, the PCPNPs exhibited immune evasion, prolonged circulation, and improved accumulation at tumor sites compared to the traditional CUR formulation. The superior tumor targeting of PCPNPs was likely due to the interactions between platelet P-selectin and tumoral CD44. Furthermore, both in vitro and in vivo assays revealed that the PCPNPs showed outstanding anticancer efficacy without obvious toxicity. Therefore, PCPNPs represent a biosafe and promising anti-tumor strategy, overcoming the limitations associated with CUR. These findings not only contribute to the advancement of natural compound nano-formulation but also open new avenues for targeted cancer treatment.
Collapse
Affiliation(s)
- Yuesong Wu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiahan Zhou
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haiyang Hu
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Zuyue Liao
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoqin Tang
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mengyao Xu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shuo Yang
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia Lai
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengli Wan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
3
|
Zhang Y, Williams GR, Wang T, Zheng Y, Xu J, Nguyen VC, Yao L, Wang H, Zhu LM. Cisplatin-loaded mesoporous polydopamine nanoparticles capped with MnO 2 and coated with platelet membrane provide synergistic anti-tumor therapy. Int J Pharm 2024; 656:124093. [PMID: 38583822 DOI: 10.1016/j.ijpharm.2024.124093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
A multifunctional nanoplatform was constructed in this work, with the goal of ameliorating the challenges faced with traditional cancer chemotherapy. Cisplatin (CP) was loaded into mesoporous polydopamine (mPDA) nanoparticles (NPs) with a drug loading of 15.8 ± 0.1 %, and MnO2 used as pore sealing agent. Finally, the NPs were wrapped with platelet membrane (PLTM). P-selectin on the PLTM can bind to CD44, which is highly expressed on the tumor cell membrane, so as to improve the targeting performance of the NPs. In addition, the CD47 on the PLTM can prevent the NPs from being phagocytosed by macrophages, which is conducive to immune escape. The final PLTM-CP@mPDA/MnO2 NPs were found to have a particle size of approximately 198 nm. MnO2 is degraded into Mn2+ in the tumor microenvironment, leading to CP release from the pores in the mPDA. CP both acts as a chemotherapy agent and can also increase the concentration of H2O2 in cells. Mn2+ can catalyze the conversion of H2O2 to OH, resulting in oxidative damage and chemodynamic therapy. In addition, Mn2+ can be used as a contrast agent in magnetic resonance imaging (MRI). In vitro and in vivo experiments were performed to explore the therapeutic effect of the NPs. When the concentration of CP is 30 μg/mL, the NPs cause approximately 50 % cell death. It was found that the PLTM-CP@mPDA/MnO2 NPs are targeted to cancerous cells, and in the tumor site cause extensive apoptosis. Tumor growth is thereby repressed. No negative off-target side effects were noted. MRI could be used to confirm the presence of the NPs in the tumor site. Overall, the nano-platform developed here provides cooperative chemotherapy and chemodynamic therapy, and can potentially be used for effective cancer treatment which could be monitored by MRI.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Tong Wang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Yilu Zheng
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Jianxiang Xu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Van Cuong Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City 70000, Viet Nam
| | - Lili Yao
- Ri Zhao Central Hospital, Ri'zhao 276800, China.
| | - Haijun Wang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China.
| | - Li-Min Zhu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
4
|
Yu J, Wang L, Ling Y, Xiao X, Gong J, Jin H, Xu J, Chen P, Xie X, Zhang L. Peptide-modified bioresponsive chondroitin sulfate micelles for targeted doxorubicin delivery in triple-negative breast cancer. Colloids Surf B Biointerfaces 2023; 227:113381. [PMID: 37257299 DOI: 10.1016/j.colsurfb.2023.113381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Triple-negative breast cancer is an offensive tumor that is highly challenging to cure. In this study, we developed novel polymeric nanoparticles that target dual receptors and respond to reducing conditions for chemotherapeutic drug release in the treatment of triple-negative breast cancer. Then we synthesized and characterized a targeted peptide-grafted chondroitin sulfate A-ss-deoxycholic acid (TCSSD) copolymer and prepare doxorubicin (DOX)-loaded TCSSD (TCSSD-D) micelles high-loading content. The bioresponsive drug release of TCSSD-D nanoparticles was demonstrated in a glutathione-containing phosphate buffer solution. We found that TCSSD-D effectively targeted CD44 and P-selectin receptors both in vitro and in vivo. TCSSD-D micelles were higher cytotoxicity and cellular uptake than unmodified DOX-containing micelles in MDA-MB-231 cells. Furthermore, TCSSD-D micelles showed the strongest suppression of tumor growth among three DOX-based formulations in triple-negative MDA-MB-231-bearing nude mice. These results suggest that amphiphilic TCSSD nanoparticles can serve as a targeted and intelligent delivery vehicle for triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Jingmou Yu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou 313000, China; Jiangxi Provincial Key Laboratory of System Biomedicine, Jiujiang University, Jiujiang 332000, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Liangliang Wang
- Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Yun Ling
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Xin Xiao
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Juntao Gong
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Hongguang Jin
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China
| | - Jing Xu
- Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Xin Xie
- Jiangxi Provincial Key Laboratory of System Biomedicine, Jiujiang University, Jiujiang 332000, China.
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada.
| |
Collapse
|
5
|
Curcumin-Loaded Platelet Membrane Bioinspired Chitosan-Modified Liposome for Effective Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15020631. [PMID: 36839952 PMCID: PMC9965064 DOI: 10.3390/pharmaceutics15020631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer is a serious threat to human health, and chemotherapy for cancer is limited by severe side effects. Curcumin (CUR) is a commonly used natural product for antitumor treatment without safety concerns. However, low bioavailability and poor tumor accumulation are great obstacles for its clinical application. Our previous research has demonstrated that platelet membrane-camouflaged nanoparticles can efficiently ameliorate the in vivo kinetic characteristics and enhance the tumor affinity of payloads. Nevertheless, the antitumor efficiency of this formulation still needs to be thoroughly investigated, and its drug release behavior is limited. Herein, CUR-loaded platelet membrane bioinspired chitosan-modified liposome (PCLP-CUR) was constructed to improve CUR release. PCLP-CUR was shown to have long retention time, improved bioavailability, strong tumor targeting capacity and effective cellular uptake. The incorporation of chitosan enabled PCLP-CUR to release cargoes quickly under mild acidic tumor conditions, leading to more complete drug release and favoring subsequent treatment. Both in vitro and in vivo investigations showed that PCLP-CUR could significantly enhance the anticancer efficacy of CUR with minimal side effects through biomimetic membrane and chitosan modification. In summary, this developed delivery system can provide a promising strategy for tumor-targeting therapy and phytochemical delivery.
Collapse
|