1
|
Ren S, Zhang M, Cai C, Zhang N, Wang Z, Li G, Liu Q, Zhu H, An H, Chen Y. A carrier-free ultrasound-responsive polyphenol nanonetworks with enhanced sonodynamic-immunotherapy for synergistic therapy of breast cancer. Biomaterials 2025; 317:123109. [PMID: 39826335 DOI: 10.1016/j.biomaterials.2025.123109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Sonodynamic therapy (SDT) is an efficient non-invasive strategy for treating breast cancer. However, the therapeutic efficacy of SDT is greatly limited by various defense mechanisms in the tumor microenvironment, particularly the overexpression of B-cell lymphoma-2 (Bcl-2). In this study, based on drug self-delivery systems, a carrier-free ultrasound-responsive polyphenol nanonetwork (GTC) was developed to enhance SDT by inhibiting Bcl-2. A one-pot method, involving the interaction of the polyphenolic Bcl-2 inhibitor gossypol (GOS), transferrin, and the sonosensitizer chlorin e6 (Ce6), was used to synthesize the GTC. The GTC was efficiently internalized by MDA-MB-231 and 4T1 cells through specific binding to transferrin receptors, and no external carriers were needed. After cellular internalization, GOS increased the lethality of Ce6-mediated SDT by reducing the expression of the Bcl-2 protein, which caused multiple toxic effects. RNA-seq analysis confirmed the transcriptomic alterations in oxidative stress and apoptotic pathways induced by the GTC nanosystem. In vivo studies revealed that GOS-assisted SDT not only eliminated tumors through sonodynamic effects and triggered immunogenic cell death but also enhanced sono-immunotherapy, thus effectively suppressing distant tumors and metastasis. This study might provide insights into carrier-free nanomedicines for SDT-based synergistic tumor therapy.
Collapse
Affiliation(s)
- Shenzhen Ren
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Mingzhe Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Chunxiu Cai
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Ning Zhang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Zijia Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Gen Li
- School of Sciences, Hebei University of Technology, Tianjin, 300401, PR China
| | - Quan Liu
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Hailiang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, PR China.
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| |
Collapse
|
2
|
Sharma K, Kumar M, Dukare A, Vigneshwaran N, Thappa C, Saxena S, Pandiyan K, D'Souza C, Singh R. Gossypol and Semisynthetic Derivatives: Chemistry, Bioactivities, and Mechanism of Actions. Chem Biodivers 2025:e202402872. [PMID: 40145340 DOI: 10.1002/cbdv.202402872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025]
Abstract
Gossypol, a polyphenolic compound predominantly derived from cotton plants, has garnered significant attention as a notable plant-derived bioactive compound with significant relevance in medicinal chemistry due to its diverse biological activities and potential therapeutic applications. Despite its inherent toxicity, gossypol exhibits insecticidal, antimicrobial, antiviral, antifertility, antiparasitic, anti-inflammatory, antioxidant, and anticancer properties. Furthermore, gossypol serves as a core molecule for synthesizing various derivatives, such as gossypol Schiff bases, gossypolone, and apogossypol, which are less toxic yet retain similar therapeutic benefits. The aim of this review is to provide a comprehensive overview of gossypol's diverse biological activities, with a particular focus on its anticancer potential, mechanisms of action, and recent advancements in its therapeutic applications. It highlights gossypol's wide-ranging biological activities, including its potent anticancer, antimicrobial, and antioxidant effects. Recent studies have shown promise in reducing gossypol's toxicity through the synthesis of derivatives, while advanced drug delivery methods, including nanocarriers, have been explored to enhance its therapeutic efficacy. Furthermore, gossypol has demonstrated significant synergistic potential when used in combination with conventional anticancer drugs, offering new avenues for cancer therapy.
Collapse
Affiliation(s)
- Kanika Sharma
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Manoj Kumar
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Ajinath Dukare
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - N Vigneshwaran
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Chandan Thappa
- CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sujata Saxena
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - K Pandiyan
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Charlene D'Souza
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | | |
Collapse
|
3
|
Zaman A, Noor S, Ahmad I, Shehroz M, Alhajri N, Ahmed S, Nishan U, Sheheryar S, Ullah R, Shahat AA, Dib H, Shah M. Exploring cotton plant compounds for novel treatments against brain-eating Naegleria fowleri: An In-silico approach. PLoS One 2025; 20:e0319032. [PMID: 39992954 PMCID: PMC11849825 DOI: 10.1371/journal.pone.0319032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/25/2025] [Indexed: 02/26/2025] Open
Abstract
To find potential inhibitors of Naegleria fowleri S-adenosyl-L-homocysteine hydrolase (NfSAHH), a brain-eating parasite, structure-based drug design was adopted. N. fowlerica causes primary amebic meningoencephalitis (PAM), a fatal central nervous system (CNS) disorder if untreated. NfSAHH protein (PDB ID: 5v96), involved in parasite growth and gene regulation, was targeted and screened against 163 metabolites from Gossypium hirsutum (cotton plant). With the aid of different software and web tools, the metabolites were subjected to several analyses. The RMSD was evaluated to validate our molecular docking strategy. Neplanocin A, a common anti-parasitic medication, was used as a reference to select top ligands for post-docking studies. Significant interactions were observed with residues THR-198, HIS-395, and MET-400. The drug-likeness of the top fifty hits was analyzed using Lipinski, Ghose, Veber, Egan, and Muegge rules. The top ten compounds following Lipinski's RO5 were studied regarding medicinal chemistry, pharmacokinetic simulation, and Swiss target prediction. Advanced strategies, including molecular dynamic simulations, binding energy calculations, and principal component analysis, were employed for the top three hits, namely curcumin, heliocide H2, and piceid, which indicated that heliocide H2 is the most promising candidate, while curcumin and piceid may need further optimization to improve their stability. Overall, the top ten phytochemicals, dotriacontanol, melissic acid, curcumin, 6,6'-dimethoxygossypol, phytosphingosine 2, methyl stearate, stearic acid, piceid, heliocide H2, and 6-methoxygossypol, reported in our study, are worthy enough to be subjected to in vivo and in vitro experimentation to find a novel drug to treat PAM.
Collapse
Affiliation(s)
- Aqal Zaman
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
- Department of Microbiology & Molecular Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Sana Noor
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Iqra Ahmad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree, Pakistan
| | - Nour Alhajri
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Sibtain Ahmed
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Umar Nishan
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Puerto Rico China
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Sheheryar Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
4
|
Tamburini D. Dye characterisation of Tahitian plants and molecular identification of mati red in historical barkcloth. Sci Rep 2024; 14:32030. [PMID: 39738714 PMCID: PMC11686377 DOI: 10.1038/s41598-024-83554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Various natural dye sources have been historically used and are still used today to decorate Pacific barkcloth. The identification of these natural dyes is a challenging task due to their molecular complexity and the scarcity of scientific investigations. In this study, barkcloth samples collected in Tahiti and dyed using local plants, including fruits of Thespesia populnea (L.) Sol. ex Corrêa, leaves of Cordia subcordata Lam., fruits of Ficus tinctoria G.Forst. and flower stalks of Musa troglodytarum L., were analysed by high-performance liquid chromatography coupled to diode array detector and mass spectrometry (HPLC-DAD-MS). The combination of extracts from the leaves of C. subcordata Lam. and fruits of F. tinctoria G.Forst. represents a Tahitian recipe to produce mati dye, which has never been analysed so far nor identified in historic barkcloth, despite being mentioned in historical accounts. The complex analytical results enabled molecular markers to be annotated in all samples. Gossypol and its derivatives are the main components of the dye from T. populnea (L.) Sol. ex Corrêa. Various anthocyanin O-glycosides, flavonoid C-glycosides as well as phenolic compounds are present in mati dye alongside condensed tannins. Anthocyanin O-hexoside-deoxyhexosides and polyacetylated O-p-coumaroylsucrose esters are found in the dye from M. troglodytarum L. These results constitute a precious molecular database and prompted a re-evaluation of the findings of a previous analytical study on samples from the Tahitian mourner's costume in the British Museum collection. The new analytical evidence enabled mati dye to be identified in most red areas of the costume, correcting previous interpretations and providing the first scientific confirmation of the use of this dye in historical context. This study enhances the possibility of identifying traditional dye sources in historic artefacts from the Pacific islands and emphasises the benefits of sharing and exchanging knowledge with local communities.
Collapse
Affiliation(s)
- Diego Tamburini
- Department of Scientific Research, The British Museum, Great Russell Street, London, WC1B 3DG, UK.
| |
Collapse
|
5
|
Malik U, Pal D. Isoxazole compounds: Unveiling the synthetic strategy, in-silico SAR & toxicity studies and future perspective as PARP inhibitor in cancer therapy. Eur J Med Chem 2024; 279:116898. [PMID: 39353240 DOI: 10.1016/j.ejmech.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Latest developments in cancer treatment have shed a light on the crucial role of PARP inhibitors that enhance the treatment effectiveness by modifying abnormal repair pathways. PARP inhibitors, such as Olaparib, Rucaparib, Niraparib, and Talazoparib have been approved in a number of cancers including BRCA 1/BRCA2 associated malignancies although there are many difficulties as therapeutical resistance. Besides the conventional synthetic drugs, natural compounds such as flavones and flavonoids have been found to be PARP inhibitors but only in preclinical studies. Isoxazole is very important class of potential candidates for medicinal chemistry with anti-cancer and other pharmacological activities. At present, there are no approved PARP inhibitors of isoxazole origin but their ability to hit many pathways inside the cancer cells points out on its importance for future treatments design. In drug development, isoxazoles are helpful because of the molecular design flexibility that may be enhanced using various synthetic approaches. This review highlights the molecular mechanisms of PARP inhibition, importance of isoxazole compounds and present advances in their synthetic strategies that demonstrate promise for these agents as new anticancer drugs. It emphasizes that isoxazole-based PARP inhibitors compounds could be novel anti-cancer drugs. Through this review, we hope to grow a curiosity in additional explorations of isoxazole-based PARP inhibitors and their applications in the trends of novel insights towards precision cancer therapy.
Collapse
Affiliation(s)
- Udita Malik
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495009, India
| | - Dilipkumar Pal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495009, India.
| |
Collapse
|
6
|
Lopez-Charcas O, Benouna O, Lemoine R, Rosendo-Pineda MJ, Anguheven-Ledezma TG, Sandoval-Vazquez L, Gallegos-Gomez ML, Robles-Martinez L, Herrera-Carrillo Z, Ramírez-Aragón M, Alfaro A, Chadet S, Ferro F, Besson P, Jiang LH, Velu SE, Guerrero-Hernandez A, Roger S, Carlos Gomora J. Blockade of Ca V3 calcium channels and induction of G 0/G 1 cell cycle arrest in colon cancer cells by gossypol. Br J Pharmacol 2024; 181:4546-4570. [PMID: 39081110 PMCID: PMC11613961 DOI: 10.1111/bph.16497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND AND PURPOSE Gastrointestinal tumours overexpress voltage-gated calcium (CaV3) channels (CaV3.1, 3.2 and 3.3). CaV3 channels regulate cell growth and apoptosis colorectal cancer. Gossypol, a polyphenolic aldehyde found in the cotton plant, has anti-tumour properties and inhibits CaV3 currents. A systematic study was performed on gossypol blocking mechanism on CaV3 channels and its potential anticancer effects in colon cancer cells, which express CaV3 isoforms. EXPERIMENTAL APPROACH Transcripts for CaV3 proteins were analysed in gastrointestinal cancers using public repositories and in human colorectal cancer cell lines HCT116, SW480 and SW620. The gossypol blocking mechanism on CaV3 channels was investigated by combining heterologous expression systems and patch-clamp experiments. The anti-tumoural properties of gossypol were estimated by cell proliferation, viability and cell cycle assays. Ca2+ dynamics were evaluated with cytosolic and endoplasmic reticulum (ER) Ca2+ indicators. KEY RESULTS High levels of CaV3 transcripts correlate with poor prognosis in gastrointestinal cancers. Gossypol blockade of CaV3 isoforms is concentration- and use-dependent interacting with the closed, activated and inactivated conformations of CaV3 channels. Gossypol and CaV3 channels down-regulation inhibit colorectal cancer cell proliferation by arresting cell cycles at the G0/G1 and G2/M phases, respectively. CaV3 channels underlie the vectorial Ca2+ uptake by endoplasmic reticulum in colorectal cancer cells. CONCLUSION AND IMPLICATIONS Gossypol differentially blocked CaV3 channel and its anticancer activity was correlated with high levels of CaV3.1 and CaV3.2 in colorectal cancer cells. The CaV3 regulates cell proliferation and Ca2+ dynamics in colorectal cancer cells. Understanding this blocking mechanism maybe improve cancer therapies.
Collapse
Grants
- SPF201909009198 Fondation pour la Recherche Médicale (FRM), France
- BB/C517317/1 Biotechnology and Biological Sciences Research Council, UK
- G2022026006L National High-End Foreign Expert Recruitment Plan of China, China
- pre-R01grant O'Neal Comprehensive Cancer Center, USA
- CVU1148606 Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico
- PrixRubanRoseAvenir Le Cancer du sein, parlons-en, France
- 16IRTSTHN020 Department of Education of the Henan Province, China
- Ministère de la Recherche et des Technologies, France
- Université de Tours, France
- IN209820 PAPIIT-DGAPA-UNAM, Mexico
- NavMetarget Conseil Régional du Centre-Val de Loire, France
- 1R21CA226491 National Institutes of Health (NIH), USA
- R21 CA226491 NCI NIH HHS
- 099758/Z/12/Z Wellcome Trust, UK
- CanalEx Conseil Régional du Centre-Val de Loire, France
- I1200/320/2022 CVU 369878 Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico
- Ligue Nationale Contre le Cancer, Interrégion Grand-Ouest: comités 29, 36, 86 and 37, France
- 2016PN-KFKT-06 Disciplinary Group of Psychology and Neuroscience, Xinxiang Medical University, China
- Wellcome Trust
- A1-S-19171 Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Oumnia Benouna
- Université de Tours, Inserm U1327 ISCHEMIA “Membrane Signalling and Inflammation in Reperfusion Injuries” 37032 Tours, France
| | - Roxane Lemoine
- Université de Tours, Inserm U1327 ISCHEMIA “Membrane Signalling and Inflammation in Reperfusion Injuries” 37032 Tours, France
| | - Margarita Jacaranda Rosendo-Pineda
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Tonantzin Guadalupe Anguheven-Ledezma
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | | | | | - Leticia Robles-Martinez
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Zazil Herrera-Carrillo
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac, 52786 Mexico City, México
| | - Miguel Ramírez-Aragón
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Ana Alfaro
- Servicio de Anatomía Patológica, Hospital General de México “Dr. Eduardo Liceaga” 06720 Mexico City, México
| | - Stéphanie Chadet
- Université de Tours, Inserm U1327 ISCHEMIA “Membrane Signalling and Inflammation in Reperfusion Injuries” 37032 Tours, France
| | - Fabio Ferro
- Université de Tours, Inserm U1327 ISCHEMIA “Membrane Signalling and Inflammation in Reperfusion Injuries” 37032 Tours, France
| | - Pierre Besson
- Université de Tours, Inserm U1327 ISCHEMIA “Membrane Signalling and Inflammation in Reperfusion Injuries” 37032 Tours, France
| | - Lin-Hua Jiang
- Université de Tours, Inserm U1327 ISCHEMIA “Membrane Signalling and Inflammation in Reperfusion Injuries” 37032 Tours, France
- Department of Physiology and Pathophysiology and Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, 901 14 Street South, Birmingham, AL 35294-1240, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1025 18 Street South, Birmingham, AL 35294-1240, USA
| | | | - Sébastien Roger
- Université de Tours, Inserm U1327 ISCHEMIA “Membrane Signalling and Inflammation in Reperfusion Injuries” 37032 Tours, France
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| |
Collapse
|
7
|
Stepanov AV, Yarovenko VN, Nasyrova DI, Dezhenkova LG, Akchurin IO, Krayushkin MM, Ilyushenkova VV, Shchekotikhin AE, Tretyakov EV. A Spin-Labeled Derivative of Gossypol. Molecules 2024; 29:4966. [PMID: 39459334 PMCID: PMC11510377 DOI: 10.3390/molecules29204966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Gossypol and its derivatives arouse interest due to their broad spectrum of biological activities. Despite its wide potential application, there is no reported example of gossypol derivatives bearing stable radical functional groups. The first gossypol nitroxide hybrid compound was prepared here via formation of a Schiff base. By this approach, synthesis of a gossypol nitroxide conjugate was performed by condensation of gossypol with a 4-amino-TEMPO (4-amino-2,2,6,6-tetramethylpiperidin-1-oxyl) free radical, which afforded the target product in high yield. Its structure was proven by a combination of NMR and EPR spectroscopy, infrared spectroscopy, mass spectrometry, and high-resolution mass spectrometry. In addition, the structure of the gossypol nitroxide was determined by single-crystal X-ray diffraction measurements. In crystals, the paramagnetic Schiff base exists in an enamine-enamine tautomeric form. The tautomer is strongly stabilized by the intra- and intermolecular hydrogen bonds promoted by the resonance of π-electrons in the aromatic system. NMR analyses of the gossypol derivative proved that in solutions, the enamine-enamine tautomeric form prevailed. The gossypol nitroxide at micromolar concentrations suppressed the growth of tumor cells; however, compared to gossypol, the cytotoxicity of the obtained conjugate was substantially lower.
Collapse
Affiliation(s)
- Andrey V. Stepanov
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (A.V.S.); (V.N.Y.); (D.I.N.); (V.V.I.)
| | - Vladimir N. Yarovenko
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (A.V.S.); (V.N.Y.); (D.I.N.); (V.V.I.)
| | - Darina I. Nasyrova
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (A.V.S.); (V.N.Y.); (D.I.N.); (V.V.I.)
| | - Lyubov G. Dezhenkova
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya St. 11, Moscow 119021, Russia; (L.G.D.); (I.O.A.); (A.E.S.)
| | - Igor O. Akchurin
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya St. 11, Moscow 119021, Russia; (L.G.D.); (I.O.A.); (A.E.S.)
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Mickhail M. Krayushkin
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (A.V.S.); (V.N.Y.); (D.I.N.); (V.V.I.)
| | - Valentina V. Ilyushenkova
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (A.V.S.); (V.N.Y.); (D.I.N.); (V.V.I.)
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, Bolshaya Pirogovskaya St. 11, Moscow 119021, Russia; (L.G.D.); (I.O.A.); (A.E.S.)
| | - Evgeny V. Tretyakov
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Ave. 47, Moscow 119991, Russia; (A.V.S.); (V.N.Y.); (D.I.N.); (V.V.I.)
| |
Collapse
|
8
|
Guneidy RA, Zaki ER, Saleh NSE, Shokeer A. Inhibition of human glutathione transferase by catechin and gossypol: comparative structural analysis by kinetic properties, molecular docking and their efficacy on the viability of human MCF-7 cells. J Biochem 2023; 175:69-83. [PMID: 37787553 DOI: 10.1093/jb/mvad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Glutathione transferase Pi (GSTP1) expression is increased in many cancer types and is associated with multidrug resistance and apoptosis inhibition. Inhibitors of GSTP1-1 have the potential to overcome drug resistance and improve chemotherapy efficacy as adjuvant agents. This study investigated the effects of catechin and gossypol on human glutathione transferase Pi (GSTP1-1) activity and their cytotoxic effects on breast cancer cells (MCF-7) individually and in combination with tamoxifen (TAM). Gossypol effectively inhibited the enzyme with an IC50 value of 40 μM, compared to 200 μM for catechin. Gossypol showed stronger inhibition of GSTP1-1 activity (Ki = 63.3 ± 17.5 μM) compared to catechin (Ki = 220 ± 44 μM). Molecular docking analysis revealed their binding conformations to GSTP1-1, with gossypol binding at the subunit interface in an un-competitive manner and catechin showing mixed non-competitive inhibition. Gossypol had severe cytotoxic effects on both MCF-7 cells and normal BJ1 cells, while catechin had a weak cytotoxic effect on MCF-7 cells only. Combination therapy with TAM resulted in cytotoxicity of 27.3% and 35.2% when combined with catechin and gossypol, respectively. Gossypol showed higher toxicity to MCF-7 cells, but its strong effects on normal cells raised concerns about selectivity and potential side effects.
Collapse
Affiliation(s)
| | - Eman Ragab Zaki
- Department of Molecular Biology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Nevein Salah-Eldin Saleh
- Department of Molecular Biology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Abeer Shokeer
- Department of Molecular Biology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
9
|
Paunovic D, Rajkovic J, Novakovic R, Grujic-Milanovic J, Mekky RH, Popa D, Calina D, Sharifi-Rad J. The potential roles of gossypol as anticancer agent: advances and future directions. Chin Med 2023; 18:163. [PMID: 38098026 PMCID: PMC10722855 DOI: 10.1186/s13020-023-00869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
Gossypol, a polyphenolic aldehyde derived from cottonseed plants, has seen a transformation in its pharmaceutical application from a male contraceptive to a candidate for cancer therapy. This shift is supported by its recognized antitumor properties, which have prompted its investigation in the treatment of various cancers and related inflammatory conditions. This review synthesizes the current understanding of gossypol as an anticancer agent, focusing on its pharmacological mechanisms, strategies to enhance its clinical efficacy, and the status of ongoing clinical evaluations.The methodological approach to this review involved a systematic search across several scientific databases including the National Center for Biotechnology Information (NCBI), PubMed/MedLine, Google Scholar, Scopus, and TRIP. Studies were meticulously chosen to cover various aspects of gossypol, from its chemical structure and natural sources to its pharmacokinetics and confirmed anticancer efficacy. Specific MeSH terms and keywords related to gossypol's antineoplastic applications guided the search strategy.Results from selected pharmacological studies indicate that gossypol inhibits the Bcl-2 family of anti-apoptotic proteins, promoting apoptosis in tumor cells. Clinical trials, particularly phase I and II, reveal gossypol's promise as an anticancer agent, demonstrating efficacy and manageable toxicity profiles. The review identifies the development of gossypol derivatives and novel carriers as avenues to enhance therapeutic outcomes and mitigate adverse effects.Conclusively, gossypol represents a promising anticancer agent with considerable therapeutic potential. However, further research is needed to refine gossypol-based therapies, explore combination treatments, and verify their effectiveness across cancer types. The ongoing clinical trials continue to support its potential, suggesting a future where gossypol could play a significant role in cancer treatment protocols.
Collapse
Affiliation(s)
- Danijela Paunovic
- Institute for Biological Research Sinisa Stankovic, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jovana Rajkovic
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Radmila Novakovic
- Center for Genome Sequencing and Bioinformatics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Jelica Grujic-Milanovic
- Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, University of Belgrade, Belgrade, Serbia
| | - Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt.
| | - Dragos Popa
- Department of Plastic Surgery, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
10
|
Comunale BA, Larson RJ, Jackson-Ward E, Singh A, Koback FL, Engineer LD. The Functional Implications of Broad Spectrum Bioactive Compounds Targeting RNA-Dependent RNA Polymerase (RdRp) in the Context of the COVID-19 Pandemic. Viruses 2023; 15:2316. [PMID: 38140557 PMCID: PMC10747147 DOI: 10.3390/v15122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND As long as COVID-19 endures, viral surface proteins will keep changing and new viral strains will emerge, rendering prior vaccines and treatments decreasingly effective. To provide durable targets for preventive and therapeutic agents, there is increasing interest in slowly mutating viral proteins, including non-surface proteins like RdRp. METHODS A scoping review of studies was conducted describing RdRp in the context of COVID-19 through MEDLINE/PubMed and EMBASE. An iterative approach was used with input from content experts and three independent reviewers, focused on studies related to either RdRp activity inhibition or RdRp mechanisms against SARS-CoV-2. RESULTS Of the 205 records screened, 43 studies were included in the review. Twenty-five evaluated RdRp activity inhibition, and eighteen described RdRp mechanisms of existing drugs or compounds against SARS-CoV-2. In silico experiments suggested that RdRp inhibitors developed for other RNA viruses may be effective in disrupting SARS-CoV-2 replication, indicating a possible reduction of disease progression from current and future variants. In vitro, in vivo, and human clinical trial studies were largely consistent with these findings. CONCLUSIONS Future risk mitigation and treatment strategies against forthcoming SARS-CoV-2 variants should consider targeting RdRp proteins instead of surface proteins.
Collapse
Affiliation(s)
- Brittany A. Comunale
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robin J. Larson
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Palliative Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Erin Jackson-Ward
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aditi Singh
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92161, USA
| | | | - Lilly D. Engineer
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Shi X, Lv X, Xiao D. Gossypol improves myocardial dysfunction caused by sepsis by regulating histone acetylation. Clin Transl Sci 2023; 16:2189-2197. [PMID: 37626472 PMCID: PMC10651647 DOI: 10.1111/cts.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Gossypol is a polyphenol from the cotton plant with anti-inflammatory and anti-oxidation activities and can also function as a histone deacetylase (HDAC) inhibitor. Sepsis is an inflammatory disease with high mortality. Inflammation, oxidative stress, and epigenetic factors are involved in sepsis and its complications. The biological activities of gossypol strongly suggest the potential effects of gossypol on sepsis. In the present study, the beneficial effects of gossypol on sepsis were evaluated. We established a cecal ligation and puncture (CLP) mouse model of sepsis and treated CLP mice with gossypol. The survival rate, serum level of myocardial injury markers, and myocardial level of oxidation markers were measured. We also administered gossypol to lipopolysaccharide (LPS)-treated primary cardiomyocytes. The production of pro-inflammatory cytokines, activation of protein kinase B (AKT) and IκB kinase (IKK), acetylation of histone, and expression of HDACs were measured. Gossypol prevented the death of CLP mice and ameliorated myocardial damage in CLP mice. Moreover, gossypol decreased oxidative factors, while promoting antioxidant production in CLP mice. Gossypol prevented LPS and cytosine-phosphate-guanosine-induced expression of pro-inflammatory cytokines, suppressed LPS-induced activation of AKT and IKK, inhibited histone acetylation, and decreased the expression of HDACs. In conclusion, gossypol ameliorates myocardial dysfunction in mice with sepsis.
Collapse
Affiliation(s)
- Xiaohui Shi
- Department of Critical Care MedicinePeople's Hospital of Xinjiang Uygur Autonomous RegionXinjiangChina
| | - Xinwei Lv
- Department of Critical Care MedicinePeople's Hospital of Xinjiang Uygur Autonomous RegionXinjiangChina
| | - Dong Xiao
- Department of Critical Care MedicinePeople's Hospital of Xinjiang Uygur Autonomous RegionXinjiangChina
| |
Collapse
|