1
|
Wang N, Yang F, Qiu Z, Zhang L, Zou D, Tang Y, Zhang R, Sun C, Liu P, Qi K, Wang J, He H, Gan L. Curcumin prevents dexamethasone-induced activation of the pseudorabies virus in rat pheochromocytoma cells through the miR-155-5p-Aak1-Numb/Notch2 signalling axis. Vet Res 2025; 56:86. [PMID: 40259414 PMCID: PMC12010530 DOI: 10.1186/s13567-025-01509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/28/2025] [Indexed: 04/23/2025] Open
Abstract
Pseudorabies virus (PRV) causes neurological disorders and organ damage in diseased animals. After initial infection, PRV activity is gradually inhibited; however, stress stimulation increases the host's glucocorticoid levels, which overcomes the inhibition of PRV activity. Curcumin (Cur) helps maintain the inhibitory state of the Epstein-Barr virus, although further research is needed to establish whether Cur can prevent PRV activation triggered by stress hormones. In this study, we used PC-12 cells to determine the effects of Cur on PRV activation. The cells were successfully infected with PRV at a multiplicity of infection of 1 for 24 h, resulting in the inhibition of PRV activity. Following incubation with 0.5 µM dexamethasone (DEX) for 4 h, the inhibition of PRV activity was blocked. Further mechanistic analyses using a dual-luciferase assay revealed that miR-155-5p directly targets and regulates Aak1 and its downstream signalling molecules, Numb and Notch2, in maintaining and disrupting PRV inhibition. Moreover, in vitro experiments using miR-155-5p mimics and inhibitors, combined with Aak1 overexpression and interference, confirmed that the miR-155-5p-Aak1-Numb/Notch2 axis prevented DEX-induced disruption of PRV inhibition by Cur. These findings provide a novel regulatory target for preventing stress-activated PRV and provide evidence for the potential use of Cur as a stress modulator in practical applications.
Collapse
Affiliation(s)
- Naixiu Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Fan Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Zhiyun Qiu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Lin Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Dingqiu Zou
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yanru Tang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Ruihan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Chenlu Sun
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Pei Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Kexin Qi
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Jingyi Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Hua He
- College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, 611130, China
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
2
|
Saha S, Tripathy S, Patra CR. Neuritogenic activity of metal nanoparticles. Nanomedicine (Lond) 2024; 19:363-366. [PMID: 38214170 DOI: 10.2217/nnm-2023-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Affiliation(s)
- Sudipta Saha
- Department of Applied Biology, CSIR - Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sanchita Tripathy
- Department of Applied Biology, CSIR - Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR - Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
3
|
Perez-Araluce M, Jüngst T, Sanmartin C, Prosper F, Plano D, Mazo MM. Biomaterials-Based Antioxidant Strategies for the Treatment of Oxidative Stress Diseases. Biomimetics (Basel) 2024; 9:23. [PMID: 38248597 PMCID: PMC10813727 DOI: 10.3390/biomimetics9010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress is characterized by an increase in reactive oxygen species or a decrease in antioxidants in the body. This imbalance leads to detrimental effects, including inflammation and multiple chronic diseases, ranging from impaired wound healing to highly impacting pathologies in the neural and cardiovascular systems, or the bone, amongst others. However, supplying compounds with antioxidant activity is hampered by their low bioavailability. The development of biomaterials with antioxidant capacity is poised to overcome this roadblock. Moreover, in the treatment of chronic inflammation, material-based strategies would allow the controlled and targeted release of antioxidants into the affected tissue. In this review, we revise the main causes and effects of oxidative stress, and survey antioxidant biomaterials used for the treatment of chronic wounds, neurodegenerative diseases, cardiovascular diseases (focusing on cardiac infarction, myocardial ischemia-reperfusion injury and atherosclerosis) and osteoporosis. We anticipate that these developments will lead to the emergence of new technologies for tissue engineering, control of oxidative stress and prevention of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Maria Perez-Araluce
- Biomedical Engineering Program, Enabling Technologies Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain;
| | - Tomasz Jüngst
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, D-97070 Würzburg, Germany
- Bavarian Polymer Institute, University of Bayreuth, 95447 Bayreuth, Germany
| | - Carmen Sanmartin
- Department of Pharmaceutical Science, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Felipe Prosper
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC) CB16/12/00489, 28029 Madrid, Spain
- Hemato-Oncology Program, Cancer Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Science, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Manuel M. Mazo
- Biomedical Engineering Program, Enabling Technologies Division, CIMA Universidad de Navarra, 31008 Pamplona, Spain;
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| |
Collapse
|
4
|
Bolandghamat S, Behnam‐Rassouli M. Iron role paradox in nerve degeneration and regeneration. Physiol Rep 2024; 12:e15908. [PMID: 38176709 PMCID: PMC10766496 DOI: 10.14814/phy2.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Iron accumulates in the neural tissue during peripheral nerve degeneration. Some studies have already been suggested that iron facilitates Wallerian degeneration (WD) events such as Schwann cell de-differentiation. On the other hand, intracellular iron levels remain elevated during nerve regeneration and gradually decrease. Iron enhances Schwann cell differentiation and axonal outgrowth. Therefore, there seems to be a paradox in the role of iron during nerve degeneration and regeneration. We explain this contradiction by suggesting that the increase in intracellular iron concentration during peripheral nerve degeneration is likely to prepare neural cells for the initiation of regeneration. Changes in iron levels are the result of changes in the expression of iron homeostasis proteins. In this review, we will first discuss the changes in the iron/iron homeostasis protein levels during peripheral nerve degeneration and regeneration and then explain how iron is related to nerve regeneration. This data may help better understand the mechanisms of peripheral nerve repair and find a solution to prevent or slow the progression of peripheral neuropathies.
Collapse
Affiliation(s)
- Samira Bolandghamat
- Department of Biology, Faculty of ScienceFerdowsi University of MashhadMashhadIran
| | | |
Collapse
|
5
|
Korakaki E, Simos YV, Karouta N, Spyrou K, Zygouri P, Gournis DP, Tsamis KI, Stamatis H, Dounousi E, Vezyraki P, Peschos D. Effect of Highly Hydrophilic Superparamagnetic Iron Oxide Nanoparticles on Macrophage Function and Survival. J Funct Biomater 2023; 14:514. [PMID: 37888179 PMCID: PMC10607831 DOI: 10.3390/jfb14100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/09/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have garnered significant attention in the medical sector due to their exceptional superparamagnetic properties and reliable tracking capabilities. In this study, we investigated the immunotoxicity of SPIONs with a modified surface to enhance hydrophilicity and prevent aggregate formation. The synthesized SPIONs exhibited a remarkably small size (~4 nm) and underwent surface modification using a novel "haircut" reaction strategy. Experiments were conducted in vitro using a human monocytic cell line (THP-1). SPIONs induced dose-dependent toxicity to THP-1 cells, potentially by generating ROS and initiating the apoptotic pathway in the cells. Concentrations up to 10 μg/mL did not affect the expression of Nrf2, HO-1, NF-κB, or TLR-4 proteins. The results of the present study demonstrated that highly hydrophilic SPIONs were highly toxic to immune cells; however, they did not activate pathways of inflammation and immune response. Further investigation into the mechanisms of cytotoxicity is warranted to develop a synthetic approach for producing effective, highly hydrophilic SPIONs with little to no side effects.
Collapse
Affiliation(s)
- Efterpi Korakaki
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (K.I.T.); (P.V.); (D.P.)
| | - Yannis Vasileios Simos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (K.I.T.); (P.V.); (D.P.)
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece; (N.K.); (P.Z.); (D.P.G.); (H.S.); (E.D.)
| | - Niki Karouta
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece; (N.K.); (P.Z.); (D.P.G.); (H.S.); (E.D.)
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece; (N.K.); (P.Z.); (D.P.G.); (H.S.); (E.D.)
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiota Zygouri
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece; (N.K.); (P.Z.); (D.P.G.); (H.S.); (E.D.)
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Panagiotis Gournis
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece; (N.K.); (P.Z.); (D.P.G.); (H.S.); (E.D.)
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Ioannis Tsamis
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (K.I.T.); (P.V.); (D.P.)
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece; (N.K.); (P.Z.); (D.P.G.); (H.S.); (E.D.)
| | - Haralambos Stamatis
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece; (N.K.); (P.Z.); (D.P.G.); (H.S.); (E.D.)
- Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Dounousi
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece; (N.K.); (P.Z.); (D.P.G.); (H.S.); (E.D.)
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Patra Vezyraki
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (K.I.T.); (P.V.); (D.P.)
| | - Dimitrios Peschos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (K.I.T.); (P.V.); (D.P.)
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece; (N.K.); (P.Z.); (D.P.G.); (H.S.); (E.D.)
| |
Collapse
|