1
|
Chen X, Liao X, Lu G, Ma Y, Wang R, Yuan A, Xie Y, Pu J. Aptamer BT200 is protective against myocardial ischemia-reperfusion injury in mice. J Thromb Haemost 2025; 23:222-234. [PMID: 39442622 DOI: 10.1016/j.jtha.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Myocardial ischemia-reperfusion (MI/R) injury tends to affect cardiac function and leads to poor patient prognosis, and there is still no effectively targeted drug to develop anti-von Willebrand factor (VWF) aptamer in acute coronary heart disease. However, the newly anti-VWF aptamer BT200 is applied not only for stroke and hemophilia but also for antithrombolism function in clinical development. The role of BT200 in acute myocardial injury during MI/R is still unknown. OBJECTIVES To investigate the cardioprotective effect of aptamer BT200 in a mouse model of MI/R. METHODS C57BL/6 mice were subjected to 30-minute ischemia and 24-hour reperfusion to establish MI/R model. Mice were treated with intravenous injection of cy3-labeled BT200 and were observed by an in vivo imaging system at different time points. Then, mice were sampled and evaluated by echocardiography, Evans triphenyltetrazolium chloride staining, histopathologic, western blotting, and real-time quantitative polymerase chain reaction assays to detect cardiac injury and inflammation response after 24-hour reperfusion. RESULTS BT200 aptamer can enter and infiltrate into the ischemic myocardium after 24-hour reperfusion. BT200 was shown to inhibit VWF A1 activity and prolong bleeding time in MI/R mice. Moreover, BT200-treated mice had a significant reduction in infarct size and an improvement in cardiac function post-MI/R. BT200 treatment can also alleviate MI/R-induced microvascular obstruction, inflammation response, and cardiomyocyte apoptosis. CONCLUSION Pharmacologic targeting of VWF with BT200 alleviates acute MI/R injury in a murine model and may be a novel therapy strategy for acute myocardial infarction.
Collapse
Affiliation(s)
- Xinyuan Chen
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xianying Liao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guiping Lu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Ma
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruowen Wang
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ancai Yuan
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuquan Xie
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Xiao Y, Pan T, Da W, Liu Y, Chen S, Chen D, Liu K, Zheng Y, Xie D, Gao Y, Xu H, Sun Y, Tan W. Aptamer-drug conjugates-loaded bacteria for pancreatic cancer synergistic therapy. Signal Transduct Target Ther 2024; 9:272. [PMID: 39397032 PMCID: PMC11471780 DOI: 10.1038/s41392-024-01973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with the highest mortality rates, and it currently lacks effective drugs. Aptamer-drug conjugates (ApDC), as a form of nucleic acid drug, show great potential in cancer therapy. However, the instability of nucleic acid-based drugs in vivo and the avascularity of pancreatic cancer with dense stroma have limited their application. Fortunately, VNP20009, a genetically modified strain of Salmonella typhimurium, which has a preference for anaerobic environments, but is toxic and lacks specificity, can potentially serve as a delivery vehicle for ApDC. Here, we propose a synergistic therapy approach that combines the penetrative capability of bacteria with the targeting and toxic effects of ApDC by conjugating ApDC to VNP20009 through straightforward, one-step click chemistry. With this strategy, bacteria specifically target pancreatic cancer through anaerobic chemotaxis and subsequently adhere to tumor cells driven by the aptamer's specific binding. Results indicate that this method prolongs the serum stability of ApDC up to 48 h and resulted in increased drug concentration at tumor sites compared to the free drugs group. Moreover, the aptamer's targeted binding to cancer cells tripled bacterial colonization at the tumor site, leading to increased death of tumor cells and T cell infiltration. Notably, by integrating chemotherapy and immunotherapy, the effectiveness of the treatment is significantly enhanced, showing consistent results across various animal models. Overall, this strategy takes advantage of bacteria and ApDC and thus presents an effective synergistic strategy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yu Xiao
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Pan
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wuren Da
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanding Liu
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangya Chen
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daiquan Chen
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Keying Liu
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Zheng
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daolong Xie
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Gao
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Xu
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yang Sun
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
3
|
Ma Y, Liao X, Lu G, Chen X, Qin Y, Yuan A, Wang R, Xie Y, Pu J. Functionalizing Sgc8-Paclitaxel Conjugates with F-Base Modifications: Targeted Drug Delivery with Optimized Cardiac Safety. ChemMedChem 2024; 19:e202400112. [PMID: 38782722 DOI: 10.1002/cmdc.202400112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Recent advancements in cancer treatment have improved patient prognoses, but chemotherapy induced cardiotoxicity remains a prevalent concern. This study explores the potential of F-base-modified aptamers for targeted drug delivery, focusing on their impact on cardiotoxicity. From the phosphoramidite, F-base-functionalized Sgc8-F23 was prepared in an automated and programmable way, which was further reacted with paclitaxel (PTX) to give the F-base- modified aptamer Sgc8-paclitaxel conjugates (Sgc8-F23-PTX) efficiently. The conjugate exhibited prolonged circulation time and enhanced efficacy as a precision anticancer drug delivery system. Echocardiographic assessments revealed no exacerbation of cardiac dysfunction after myocardial infarction (MI) and no pathological changes or increased apoptosis in non-infarcted cardiac regions. Autophagy pathway analysis showed no discernible differences in Sgc8-F23-PTX-treated cardiomyocytes compared with controls, in contrast to the increased autophagy with nanoparticle albumin-bound-paclitaxel (Nab-PTX). Similarly, apoptosis analysis showed no significant differences. Moreover, Sgc8-F23-PTX exhibited no inhibitory effect on hERG, hNav1.5, or hCav1.2 channels. These findings suggest the safety and efficacy of F-base-modified Sgc8 aptamers for targeted drug delivery with potential clinical applications. Further research is warranted for clinical translation and exploration of other drug carriers.
Collapse
Affiliation(s)
- Yue Ma
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xianying Liao
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guiping Lu
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinyuan Chen
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Qin
- Institute of Molecular Medicine (IMM), Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ancai Yuan
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruowen Wang
- Institute of Molecular Medicine (IMM), Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuquan Xie
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Pu
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
4
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
5
|
Cao J, Zhang F, Xiong W. Discovery of Aptamers and the Acceleration of the Development of Targeting Research in Ophthalmology. Int J Nanomedicine 2023; 18:4421-4430. [PMID: 37551274 PMCID: PMC10404440 DOI: 10.2147/ijn.s418115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/19/2023] [Indexed: 08/09/2023] Open
Abstract
Aptamers are widely applied to diagnosis and therapy because of their targeting. However, the current progress of research into aptamers for the treatment of eye disorders has not been well-documented. The current literature on aptamers was reviewed in this study. Aptamer-related drugs and biochemical sensors have been evaluated for several eye disorders within the past decade; S58 targeting TGF-β receptor II and pegaptanib targeting vascular endothelial growth factor (VEGF) are used to prevent fibrosis after glaucoma filtration surgery. Anti-brain-derived neurotrophic factor aptamer has been used to diagnose glaucoma. The first approved aptamer drug (pegaptanib) has been used to inhibit angiogenesis in age-related macular degeneration (AMD) and diabetic retinopathy (DR), and its efficacy and safety have been demonstrated in clinical trials. Aptamers, including E10030, RBM-007, AS1411, and avacincaptad pegol, targeting other angiogenesis-related biomarkers have also been discovered and subjected to clinical trials. Aptamers, such as C promoter binding factor 1, CD44, and advanced end products in AMD and DR, targeting other signal pathway proteins have also been discovered for therapy, and biochemical sensors for early diagnosis have been developed based on aptamers targeting VEGF, connective tissue growth factor, and lipocalin 1. Aptamers used for early detection and treatment of ocular tumors were derived from other disease biomarkers, such as CD71, nucleolin, and high mobility group A. In this review, the development and application of aptamers in eye disorders in recent years are systematically discussed, which may inspire a new link between aptamers and eye disorders. The aptamer development trajectory also facilitates the discovery of the pathogenesis and therapeutic strategies for various eye disorders.
Collapse
Affiliation(s)
- Jiamin Cao
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Feng Zhang
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Wei Xiong
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|