1
|
Huang H, Li Z, Qi Z, Ma L, Hu G, Zou C, Chen T. Engineered S. cerevisiae-pYD1-ScFv-AFB1 mitigates aflatoxin B1 toxicity via bio-binding and intestinal microenvironment repair. Food Chem Toxicol 2025; 196:115232. [PMID: 39746599 DOI: 10.1016/j.fct.2024.115232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
The highly toxic aflatoxin B1 (AFB1) is considered one of the primary risk factors for hepatocellular carcinoma, while effective measures after AFB1 exposure remain to be optimized. This study utilized cell-surface-display technique to construct an engineered S. cerevisiae-pYD1-ScFv-AFB1 (S.C-AF) that specifically binds AFB1, and verified the potential mechanism of S.C-AF in vivo through AFB1-induced (gastric perfused with 0.3 mg/kg/d AFB1 per day) liver injury mouse model. In this experiment, the C57BL/6 mouse model of AFB1-induced liver injury was treated with S.C (gastric perfused with 1 × 109 CFU/mL S.C per day) and S.C-AF (gastric perfused with 1 × 109 CFU/mL S.C-AF per day) for 4 weeks, respectively. With probiotic properties optimized, S.C.-AF achieved an in vitro AFB1 binding capacity 1.7 times higher than S. cerevisiae. Furthermore, S.C-AF could alleviate AFB1-induced liver injury by reducing proinflammatory cytokine secretion and apoptotic protein expression, enhancing antioxidative capacity via Nrf2 activation, and simultaneously reversing intestinal tight junction protein deficiency, increasing intestinal barrier permeability, and improving intestinal dysbiosis caused by AFB1 exposure. S.C-AF alleviates AFB1-induced liver lesions, which might be a novel intervention to mitigate aflatoxin toxicity.
Collapse
Affiliation(s)
- Hong Huang
- School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Ziyan Li
- School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Zhanghua Qi
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Linxi Ma
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Gang Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| | - Changwei Zou
- School of Resource and Environment, Nanchang University, Nanchang, 330031, China.
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
2
|
Luo Z, Qi Z, Luo J, Chen T. Potential applications of engineered bacteria in disease diagnosis and treatment. MICROBIOME RESEARCH REPORTS 2024; 4:10. [PMID: 40207274 PMCID: PMC11977365 DOI: 10.20517/mrr.2024.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 04/11/2025]
Abstract
Probiotics are live microorganisms that confer health benefits to the host when administered in appropriate quantities. This beneficial effect has spurred extensive research in the medical and health fields. With rapid advancements in synthetic biology, the genetic and biological characteristics of a broad array of probiotics have been elucidated. Utilizing these insights, genetic editing technologies now enable the precise modification of probiotics, leading to the development of engineered bacteria. Emerging evidence underscores the significant potential of these engineered bacteria in disease management. This review explores the methodologies for creating engineered bacteria, their preliminary applications in healthcare, and the mechanisms underlying their functions. Engineered bacteria are being developed for roles such as in vivo drug delivery systems, biosensors, and mucosal vaccines, thereby contributing to the treatment, diagnosis, and prevention of conditions including inflammatory bowel disease (IBD), metabolic disorders, cancer, and neurodegenerative diseases. The review concludes by assessing the advantages and limitations of engineered bacteria in the context of disease management.
Collapse
Affiliation(s)
- Zhaowei Luo
- School of Huankui Academy, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Zhanghua Qi
- School of Huankui Academy, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Jie Luo
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| |
Collapse
|
3
|
Wei J, Tang X, He Y, Peng Z, Liu H, He Y, Gao J. Aronia Melanocarpa Elliot Anthocyanins Inhibits Alcoholic Liver Disease by Activation of α7nAChR. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:779-794. [PMID: 38985368 DOI: 10.1007/s11130-024-01213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The study wanted to explore the preventative effects of Aornia melanocarpa Elliot anthocyanins (AMA) to Alcoholic liver disease (ALD) by bioinformatics prediction and experimental verification. We founded 419 differentially expressed genes (DEGs) in GSE28619 related to ALD from GEO database, COL1A1 was selected by the core gene module construction and molecular docking. Mice were treated by intragastric administration of gradient 50% ethanol, AMA alleviated liver injury by ALD and ameliorated the model's body weight, lessened the liver inflammation according to histopathological evaluation, increased serum liver biochemical index (AST, ALT, TC, TG and LDL-C) and decreased HDL-C, reversed the expression of enzymes (ALDH and GSH-PX), decreased cytokines expression (Ki67, TNF-α and IL-6), reversed the expression of α7nAChR and collagen I, downregulated the PI3K-Akt pathway and Keap1/HO-1 pathway (p-PI3K, PI3K, p-Akt, Akt, Keap1, Nrf2, HO-1,GSK-3β and Bcl-2), indicated that α7nAChR and collagen I may be the AMA action targets.
Collapse
Affiliation(s)
- Jie Wei
- School of Life Science, Liaoning University, Chongshan Middle Road 66, Huanggu District, Shenyang, Liaoning, 110036, China.
| | - Xian Tang
- School of Life Science, Liaoning University, Chongshan Middle Road 66, Huanggu District, Shenyang, Liaoning, 110036, China
| | - Yujing He
- School of Life Science, Liaoning University, Chongshan Middle Road 66, Huanggu District, Shenyang, Liaoning, 110036, China
| | - Ziheng Peng
- School of Life Science, Liaoning University, Chongshan Middle Road 66, Huanggu District, Shenyang, Liaoning, 110036, China
| | - Hongwei Liu
- School of Life Science, Liaoning University, Chongshan Middle Road 66, Huanggu District, Shenyang, Liaoning, 110036, China
| | - Yin He
- School of Life Science, Liaoning University, Chongshan Middle Road 66, Huanggu District, Shenyang, Liaoning, 110036, China
| | - Jun Gao
- Liaoning Academy of Forestry, Yalujiang Street 12, Huanggu District, Shenyang, 110032, China.
| |
Collapse
|
4
|
Zhang Y, Huang H, Luo C, Zhang X, Chen Y, Yue F, Xie B, Chen T, Zou C. The Next-Generation Probiotic E. coli 1917-pSK18a-MT Ameliorates Cadmium-Induced Liver Injury by Surface Display of Metallothionein and Modulation of Gut Microbiota. Nutrients 2024; 16:1468. [PMID: 38794706 PMCID: PMC11124084 DOI: 10.3390/nu16101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Cadmium (Cd) is recognized as being linked to several liver diseases. Currently, due to the limited spectrum of drugs available for the treatment of Cd intoxication, developing and designing antidotes with superior detoxification capacity and revealing their underlying mechanisms remains a major challenge. Therefore, we developed the first next-generation probiotic E. coli 1917-pSK18a-MT that delivers metallothionein (MT) to overcome Cd-induced liver injury in C57BL/6 mice by utilizing bacterial surface display technology. The results demonstrate that E. coli 1917-pSK18a-MT could efficiently express MT without altering the growth and probiotic properties of the strain. Moreover, we found that E. coli 1917-pSK18a-MT ameliorated Cd contamination-induced hepatic steatosis, inflammatory cell infiltration, and liver fibrosis by decreasing the expression of aminotransferases along with inflammatory factors. Activation of the Nrf2-Keap1 signaling pathway also further illustrated the hepatoprotective effects of the engineered bacteria. Finally, we showed that E. coli 1917-pSK18a-MT improved the colonic barrier function impaired by Cd induction and ameliorated intestinal flora dysbiosis in Cd-poisoned mice by increasing the relative abundance of the Verrucomicrobiota. These data revealed that the combination of E. coli 1917 and MT both alleviated Cd-induced liver injury to a greater extent and restored the integrity of colonic epithelial tissues and bacterial dysbiosis.
Collapse
Affiliation(s)
- Yan Zhang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; (Y.Z.); (H.H.)
| | - Hong Huang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; (Y.Z.); (H.H.)
| | - Chuanlin Luo
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China;
| | - Xinfeng Zhang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China;
| | - Yanjing Chen
- Department of Obstetrics & Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Fenfang Yue
- School of Life Sciences, Nanchang University, Nanchang 330031, China;
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Bingqing Xie
- Department of Obstetrics & Gynecology, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Tingtao Chen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China;
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Changwei Zou
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; (Y.Z.); (H.H.)
| |
Collapse
|
5
|
Ji HF, Yang ZQ, Han JJ, Li HF, Jin ZQ, Chen WQ, Chen FH, Gong MC. Safflower Yellow Inhibits Progression of Hepatocellular Carcinoma by Modulating Immunological Tolerance via FAK Pathway. Chin J Integr Med 2024; 30:339-347. [PMID: 37943489 DOI: 10.1007/s11655-023-3705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE To explore the anti-tumor effect of safflower yellow (SY) against hepatocellular carcinoma (HCC) and the underlying potential mechanism. METHODS An in vitro model was established by mixing Luc-Hepa1-6 cells and CD3+CD8+ T cells, followed by adding programmed cell death protein 1 (PD-1) antibody (Anti-mPD-1) with or without SY. The apoptosis was detected by flow cytometry and the level of inflammatory cytokines was determined by enzyme-linked immunosorbent assay. The protein levels of programmed cell death 1 ligand 1 (PD-L1), chemokine ligand (CCL5), C-X-C motif chemokine ligand 10 (CXCL10) were measured by Western blot. An in situ animal model was established in mice followed by treatment with anti-mPD-1 with or without SY. Bioluminescence imaging was monitored with an AniView 100 imaging system. To establish the FAK-overexpressed Luc-Hepa1-6 cells, cells were transfected with adenovirus containing pcDNA3.1-FAK for 48 h. RESULTS The fluorescence intensity, apoptotic rate, release of inflammatory cytokines, and CCL5/CXCL10 secretion were dramatically facilitated by anti-mPD-1 (P<0.01), accompanied by an inactivation of PD-1/PD-L1 axis, which were extremely further enhanced by SY (P<0.05 or P<0.01). Increased fluorescence intensity, elevated percentage of CD3+CD8+ T cells, facilitated release of inflammatory cytokines, inactivated PD-1/PD-L1 axis, and increased CCL5/CXCL10 secretion were observed in Anti-mPD-1 treated mice (P<0.01), which were markedly enhanced by SY (P<0.05 or P<0.01). Furthermore, the enhanced effects of SY on inhibiting tumor cell growth, facilitating apoptosis and inflammatory cytokine releasing, suppressing the PD-1/PD-L1 axis, and inducing the CCL5/CXCL10 secretion in Anti-mPD-1 treated mixture of Luc-Hepa1-6 cells and CD3+CD8+ T cells were abolished by FAK overexpression (P<0.01). CONCLUSION SY inhibited the progression of HCC by mediating immunological tolerance through inhibiting FAK.
Collapse
Affiliation(s)
- Hua-Feng Ji
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Zi-Qiang Yang
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Jun-Jun Han
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - He-Fang Li
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Zhao-Qing Jin
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Wei-Qing Chen
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Fei-Hua Chen
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Mou-Chun Gong
- Department of General Surgery, First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Wang Q, Tang Y, Dai A, Li T, Pei Y, Zhang Z, Hu X, Chen T, Chen Q. VNP20009-Abvec-Igκ-MIIP suppresses ovarian cancer progression by modulating Ras/MEK/ERK signaling pathway. Appl Microbiol Biotechnol 2024; 108:218. [PMID: 38372808 PMCID: PMC10876780 DOI: 10.1007/s00253-024-13047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Ovarian cancer poses a significant threat to women's health, with conventional treatment methods encountering numerous limitations, and the emerging engineered bacterial anti-tumor strategies offer newfound hope for ovarian cancer treatment. In this study, we constructed the VNP20009-Abvec-Igκ-MIIP (VM) engineered strain and conducted initial assessments of its in vitro growth performance and the expression capability of migration/invasion inhibitory protein (MIIP). Subsequently, ID8 ovarian cancer cells and mouse cancer models were conducted to investigate the impact of VM on ovarian cancer. Our results revealed that the VM strain demonstrated superior growth performance, successfully invaded ID8 ovarian cancer cells, and expressed MIIP, consequently suppressing cell proliferation and migration. Moreover, VM specifically targeted tumor sites and expressed MIIP which further reduced the tumor volume of ovarian cancer mice (p < 0.01), via the downregulation of epidermal growth factor receptor (EGFR), Ras, p-MEK, and p-ERK. The downregulation of the PI3K/AKT signaling pathway and the decrease in Bcl-2/Bax levels also indicated VM's apoptotic potency on ovarian cancer cells. In summary, our research demonstrated that VM exhibits promising anti-tumor effects both in vitro and in vivo, underscoring its potential for clinical treatment of ovarian cancer. KEY POINTS: • This study has constructed an engineered strain of Salmonella typhimurium capable of expressing anticancer proteins • The engineered bacteria can target and colonize tumor sites in vivo • VM can inhibit the proliferation, migration, and invasion of ovarian cancer cells.
Collapse
Affiliation(s)
- Qian Wang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Yuwen Tang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Ang Dai
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Tiange Li
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Yulin Pei
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Zuo Zhang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Xinyue Hu
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, No. 1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China.
| | - Qi Chen
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China.
| |
Collapse
|